Η “υπερδύναμη” του DESMO της Ducati και γιατί δεν το χρησιμοποιεί κανείς άλλος

Η πραγματικότητα απέναντι στις θεωρίες
Μπάμπη Μέντη
Από τον

Μπάμπη Μέντη

29/8/2022

Όποιον κι αν ρωτήσεις στις μέρες μας θα σου πει χωρίς δεύτερη σκέψη πως ο πιο αποδοτικός θάλαμος καύσης για έναν κινητήρα είναι εκείνος που έχει τέσσερις βαλβίδες αντί για δύο. Αρκεί μια γρήγορη ματιά στα τεχνικά χαρακτηριστικά των ισχυρότερων μοτοσυκλετών παραγωγής του κόσμου και θα διαπιστώσεις αμέσως πως όλοι οι τετράχρονοι κινητήρες υψηλής απόδοσης έχουν θαλάμους καύσης με τέσσερις βαλβίδες ανά κύλινδρο. Οι κινητήρες με δύο βαλβίδες ανά κύλινδρο χρησιμοποιούνται πλέον σε μοτοσυκλέτες χαμηλής απόδοσης, όμως ακόμα και σε αυτές τις κατηγορίες που οι επιδόσεις δεν είναι το ζητούμενο, τα τελευταία χρόνια οι κατασκευαστές αρχίζουν να χρησιμοποιούν την “τετράβαλβιδη τεχνολογία” λόγω των διαρκώς αυστηρότερων προδιαγραφών ρύπων, που απαιτούν άριστης ποιότητας καύση.

Μόνο που τα πράγματα δεν ήταν πάντα έτσι και για να φτάσουμε ως εδώ πέρασαν πολλά χρόνια αναζήτησης. Για την ακρίβεια, οι τετραβάλιδοι θάλαμοι καύσης στους κινητήρες μοτοσυκλετών, άργησαν ολόκληρες δεκαετίες μέχρι να καθιερωθούν.

Ως γνωστόν, ένας τετράχρονος κινητήρας εσωτερικής καύσης είναι στην πραγματικότητα μια αντλία αέρα. Όσο περισσότερο αέρα μπορεί να ρουφήξει στη μονάδα του χρόνου και όσο περισσότερο αέρα μπορεί να βγάλει από την εξάτμισή του στη μονάδα του χρόνου, τόσο περισσότερη βενζίνη μπορεί να κάψει αποτελεσματικά. Η λέξη “αποτελεσματικά” είναι το ζητούμενο για έναν κινητήρα, διότι μεγάλη κατανάλωση καυσίμου μπορεί να έχει και ένας κινητήρας που δεν βγάζει πολλά άλογα. Από την άλλη μεριά όμως, η ενέργεια βρίσκεται στη βενζίνη, οπότε δεν μπορείς να βγάλεις μεγάλες ιπποδυνάμεις καίγοντας μόνο δύο σταγόνες βενζίνη και τεράστιες ποσότητες αέρα.

Οπότε η βασική αρχή είναι: Περισσότερα κυβικά = περισσότερος αέρας και περισσότερη βενζίνη, οπότε έχουμε και ισχυρότερο κινητήρα.

Αυτή είναι η κοινή βάση και γι΄αυτό οι κατηγορίες στους αγώνες μοτοσυκλέτας έχουν συνήθως όριο στα κυβικά.

Όμως το παιχνίδι της αναζήτησης μεγαλύτερης ιπποδύναμης χωρίς να αυξήσεις τα κυβικά, μπορεί να γίνει πολύ περίπλοκο και αυτή η περιπλοκότητα είναι η μαγεία του σχεδιασμού ενός υψηλής απόδοσης κινητήρα.

Για τις ανθρώπινες αισθήσεις ο αέρας είναι “άυλος” και ασυναίσθητα τον αντιμετωπίζουμε ως κάτι “ανύπαρκτο” στη διαδικασία της καύσης.

Όμως στην πραγματικότητα ο αέρας έχει μάζα, αναπτύσσει ταχύτητα και η καύση της βενζίνης είναι μια χημική διαδικασία που χρειάζεται χρόνο για να ολοκληρωθεί.

Οποιοδήποτε σώμα με μάζα αναπτύσσει ταχύτητα, αυτομάτως αποκτά ορμή και το ίδιο συμβαίνει με τον αέρα.

Το θέμα εδώ είναι πως η ροή του αέρα δεν είναι γραμμική, αλλά τα μόρια του αέρα θα πρέπει να προσαρμοστούν στην παλινδρομική κίνηση του εμβόλου. Κάθε φορά που κλείνει η βαλβίδα εισαγωγής, ο αέρας επιβραδύνει απότομα και λόγω της ορμής που έχουν τα μόριά του, συμπιέζεται πίσω από τη βαλβίδα εισαγωγής.

 

Όσο μεγαλύτερή είναι η ποσότητα του αέρα και όσο υψηλότερη είναι η ταχύτητα που κινείται μέσα στον αυλό εισαγωγής, τόσο πιο “ισχυρή” είναι η συμπίεση των μορίων του πίσω από την βαλβίδα.

 

Ο χρόνος που ο αέρας παραμένει "συμπιεσμένος" πίσω από τη βαλβίδα εισαγωγής είναι συγκεκριμένος (καθορίζεται από τους παράγοντες που θα αναπτύξουμε παρακάτω) και αν η βαλβίδα δεν ανοίξει τη σωστή στιγμή για να μπει συμπιεσμένος αέρας στον θάλαμο καύσης, τότε αρχίζει να αποσυμπιέζεται και χάνεις το πλεονέκτημα της υπερπλήρωσης.

Το μήκος και το σχήμα των αυλών εισαγωγής καθώς και ο χρονισμός του εκκεντροφόρου που καθορίζει την κίνηση της βαλβίδας είναι άκρως σημαντικά.

Η αμερικάνικη Chrysler ασχολήθηκε πολύ πιο σοβαρά απ’ όλους στα τέλη του ’50 και στις αρχές του ’60 με την κίνηση του αέρα μέσα στον αυλό εισαγωγής, προσπαθώντας να εκμεταλλευτεί με τον καλύτερο δυνατό τρόπο τον συγχρονισμό στις “μπουκιές” συμπιεσμένου αέρα που δημιουργούνται. Ήταν η πρώτη που σχεδίασε μεγάλου μήκους αυλούς εισαγωγής (σε κάποιους κινητήρες της έφταναν σε μήκος έως και το ένα μέτρο!) και στους πειραματισμούς εκείνων των μηχανικών της Chrysler οφείλουμε σήμερα την ύπαρξη των αυλών μεταβλητού μήκους που έχουν τα περισσότερα superbike μέσα στο φιλτροκούτι τους και όλα τα αυτοκίνητα με ατμοσφαιρικούς κινητήρες υψηλής απόδοσης.

Από τη στιγμή που έχουμε κατανοήσει πόσο σημαντικό είναι το σχήμα, η διατομή και το μήκος του αυλού εισαγωγής για την σωστή τροφοδοσία με μείγμα βενζίνης/αέρα ενός ατμοσφαιρικού κινητήρα, μπορούμε πλέον να κατανοήσουμε καλύτερα και τους λόγους που ο Taglioni ερωτεύτηκε το δεσμοδρομικό σύστημα κίνησης των βαλβίδων, αλλά και γιατί οι τετραβάλβιδοι θάλαμοι καύσης άργησαν σχεδόν 40 χρόνια να καθιερωθούν στους αγώνες μοτοσυκλέτας και έπρεπε να φτάσουμε στη δεκαετία του ’80 για να αποτελέσουν βασικό χαρακτηριστικό κάθε τετράχρονου κινητήρα παραγωγής υψηλής απόδοσης.

 

Όπως είναι εύκολα κατανοητό, οι διβάλβιδοι κινητήρες έχουν δύο ΜΕΓΑΛΕΣ (σε διάμετρο και βάρος) βαλβίδες σε κάθε κύλινδρο, ενώ οι τετραβάλβιδοι έχουν τέσσερεις ΜΙΚΡΕΣ βαλβίδες.

Πίσω τους αναγκαστικά βρίσκονται εντελώς διαφορετικού σχήματος και διατομής αυλοί εισαγωγής, που όπως είπαμε πιο πάνω επηρεάζουν την ποσότητα και την ταχύτητα ροής του μείγματος προς τον θάλαμο καύσης.

Οι τετραβάλβιδοι θάλαμοι καύσης και τα δεσμοδρομικά (DESMO) συστήματα κίνησης των βαλβίδων είχαν δοκιμαστεί στους αγώνες αυτοκινήτου ήδη από το 1910, ενώ η Mercedes-Benz είχε κατασκευάσει κινητήρα Desmo πριν από το 1900.

Παρ’ όλα αυτά, οι τετραβάλβιδοι θάλαμοι καύσης είχαν σαφές πλεονέκτημα ισχύος μόνο σε όσους κινητήρες χρησιμοποιούσαν υπερσυμπιεστή, ενώ στις ατμοφαιρικές εκδόσεις των ίδιων κινητήρων δεν είχαν κανένα πλεονέκτημα ισχύος.

 

Από την άλλη μεριά, τα δεσμοδρομικά συστήματα κίνησης των βαλβίδων που χρησιμοποίησε η Peugeot, η Delage και η Mercedes στα αγωνιστικά αυτοκίνητα τους είχαν τεράστια επιτυχία και εξαιρετική αξιοπιστία στους μεγάλης διάρκειας αγώνες αυτοκινήτων των 1000 μιλίων ή των 24 ωρών της εποχής, όμως σε επίπεδο κινητήρων παραγωγής ήταν εξαιρετικά ακριβοί σε κατασκευή και απίστευτα απαιτητικοί σε συχνές ρυθμίσεις και συντήρηση (όπως δηλαδή είναι οι πνευματικές βαλβίδες στις μέρες μας).

 

Μέχρι τα μέσα του 1950, οι διβάλβιδοι θάλαμοι καύσης ήταν ο κανόνας στους αγωνιστικούς ατμοσφαιρικούς κινητήρες μοτοσυκλετών.

 

Το μοναδικό πρόβλημα που είχαν οι μηχανολόγοι της εποχής με τους διβαλβιδους κινητήρες δεν αφορούσε την απόδοσή τους, αλλά το βάρος των μεγάλων βαλβίδων.

Όσο πιο βαριά είναι η βαλβίδα, τόσο πιο σκληρό ελατήριο πρέπει να χρησιμοποιήσεις για να την κάνεις να ακολουθεί πιστά το “αμύγδαλο” του εκκεντροφόρου.

Τα σκληρά ελατήρια είναι πιο βαριά και καθώς είναι κινούμενα μέρη, αποκτούν ορμή ανάλογη του βάρους και της ταχύτητας κίνησής τους.

Από τη στιγμή που η κίνησή τους είναι παλινδρομική, τα ελατήρια των βαλβίδων εμφανίζουν αδράνεια στις αλλαγές κατεύθυνσης της πορείας τους.

Αυτή η αδράνεια του ελατηρίου είναι σοβαρότατο πρόβλημα όταν προσπαθείς να αυξήσεις την ιπποδύναμη ενός τετράχρονου ατμοσφαιρικού κινητήρα, διότι σε εμποδίζει να αυξήσεις το όριο στροφών του και βάζει όρια στο πόσο “άγριο” χρονισμό εκκεντροφόρου θα χρησιμοποιήσεις.

Η μία λύση είναι να βάλεις σε κάθε βαλβίδα δύο ή τρία μικρότερα/ελαφρύτερα ελατήρια αντί για ένα μεγάλο/σκληρό ώστε να μειώσεις την αδράνεια.

Η άλλη λύση είναι να κάνεις πιο προοδευτική τη ράμπα στο “αμύγδαλο” του εκκεντροφόρου από την μεριά που κλείνει η βαλβίδα, σχεδιάζοντας ένα ασύμμετρο “αμύγδαλο” όπου ανοίγει γρήγορα και απότομα την βαλβίδα, αλλά το κλείσιμό της να γίνεται πιο αργά και προοδευτικά, ώστε η αδράνεια του ελατηρίου και της βαλβίδας να είναι μικρότερη λόγω μειωμένης ταχύτητας αλλαγής πορείας, προλαβαίνοντας να ακολουθήσουν το προφίλ του εκκεντροφόρου χωρίς να χάνουν την επαφή μαζί του.

Μια τρίτη λύση που έφερε τα τελευταία χρόνια η BMW με την S1000RR από την εμπλοκή της στην Formula 1, είναι τα μικρά ενδιάμεσα κοκκοράκια μεταξύ εκκεντροφόρου και βαλβίδας, που επιτρέπει να έχεις μεγάλο βύθισμα και απότομη κίνηση της βαλβίδας χρησιμοποιώντας ομαλότερου προφίλ “αμύγδαλα” στους εκκεντροφόρους. Ενδιάμεσα κοκκοράκια έχουν πλέον η τελευταίες γενιές των Yamaha R1 και Kawasaki ZX-10RR.

Κεφαλή ZX-10RR 2021 με ενδυάμεσα κοκκοράκια

Η αδράνεια των ελατηρίων και των βαλβίδων στις υψηλές στροφές έχει ΤΕΡΑΣΤΙΕΣ ΕΠΙΠΤΩΣΕΙΣ στη μέγιστη απόδοση ενός τετράχρονου κινητήρα.

Η βαλβίδα ΠΡΕΠΕΙ να επιστρέφει στην έδρα της και να σφραγίζει τον θάλαμο καύσης στο σωστό χρόνο. Αν δεν επιστρέψει στη θέση της στο σωστό χρόνο και αν δεν πατήσει σωστά στην έδρα της, τότε έχουμε απώλεια συμπίεσης και η πτώση της ιπποδύναμης είναι δραματική!

Το φαινόμενο του “Valve Floating” δηλαδή όταν η βαλβίδα χοροπηδά πάνω στην έδρα της, λόγω της αδυναμίας του ελατηρίου να ακολουθείσει πιστά το προφίλ του εκκεντροφόρου, είναι ο χειρότερος εχθρός για κάθε κινητήρα υψηλής απόδοσης.

Με δεδομένη τη μεταλλουργία της εποχής του 1960, ο Soihiro Honda έδωσε όλο το βάρος  στους τετραβάλβιδους θαλάμους καύσης στις μοτοσυκλέτες των Grand Prix, καθώς οι μικρότερες/ελαφρύτερες βαλβίδες και ελατήρια σε σχέση με τους διβάλβιδους, μείωναν στο ελάχιστο τις αρνητικές επιπτώσεις της αδράνειας και του επέτρεπαν να σχεδιάσει αξιόπιστους κινητήρες που ανέβαζαν περισσότερες στροφές χωρίς απότομη πτώση της απόδοσής τους.

Αυτό στην θεωρία, διότι στην πράξη οι πρώτοι τετραβάλβιδοι της Honda δεν είχαν στους αγώνες τη δύναμη και την αξιοπιστία των διβάλβιδων αντιπάλων του και η Honda συμμετείχε σε αρκετούς αγώνες έχοντας μία τετραβάλβιδη και μία διβάλιβιση μοτοσυκλέτα ταυτόχρονα. Η αιτία είχε να κάνει με τον προβληματικό σχεδιασμό της συνολικής τροφοδοσίας του θαλάμου καύσης και η κακή ποιότητα καύσης προκαλούσε υπερθερμάνσεις στα έμβολα ρίχνοντας την απόδοση ή καταστρέφοντάς τα. Όταν μετά από δύο χρόνια βρήκε τον τρόπο να διαχειρίζεται σωστά την κίνηση του αέρα στους αυλούς εισαγωγής και τους στροβιλισμούς μέσα στο θάλαμο καύσης, οι τετραβάλβιδοι κινητήρες της Honda κυριάρχησαν στα Grand Prix και το ίδιο έκανε η MV Agusta αργότερα με τους δικούς της τετραβάλιδους αγωνιστικούς κινητήρες. 

Περίπου την ίδια εποχή στην άλλη άκρη της γης από την Ιαπωνία και συγκεκριμένα στην Bologna της Ιταλίας, o κύριος Taglioni σκέφτηκε πως δεν χρειάζεται να ανακαλύψουμε τον τροχό από την αρχή, προσπαθώντας να κάνουμε έναν τετραβάλβιδο θάλαμο καύσης να δουλέψει σωστά. Μπορούμε απλώς να λύσουμε τα προβλήματα της αδράνειας του συστήματος κίνησης των βαλβίδων στους διβάλβιδους θαλάμους καύσης.

Αφού λοιπόν το ελατήριο και η αδράνειά του είναι εκείνο που μας εμποδίζει να αυξήσουμε το όριο στροφών σε έναν διβάλβιδο κινητήρα με μεγάλες βαλβίδες και πολύ “άγριου” χρονισμού εκκεντροφόρους, τότε ας απαλλαγούμε εντελώς από την παρουσία του!

Ανασύροντας την ιδέα της δεσμοδρομικής κίνησης των βαλβίδων, ο Taglioni ανέπτυξε ένα σύστημα με δύο κοκκοράκια (βασισμένο σε εκείνο της Mercedes-Benz που σάρωνε τις νίκες με τα Silver Arrow) όπου το ένα πίεζε την βαλβίδα προς τα κάτω και το άλλο την έσπρωχνε προς τα πάνω, ακολουθώντας με απόλυτη ακρίβεια το προφίλ του εκκεντροφόρου. Αυτό σημαίνει πως οι κινητήρες Desmo έχουν θεωρητικά μηδενική αδράνεια στην κίνηση των βαλβίδων και όταν η βαλβίδα επιστρέφει στην έδρα της δεν χοροπηδάει πάνω της, οπότε δεν υπάρχει καμία απώλεια συμπίεσης στις υψηλές στροφές.

Τα μοντέλα με κινητήρες Desmo της Ducati είχαν πολύ πιο “άγριους” εκκεντροφόρους σε σχέση με τα μοντέλα που δεν είχαν Desmo και χάρη στο απόλυτο σφράγισμα του θαλάμου καύσης έως τον κόφτη, είχαν πολύ παραπάνω δύναμη στις υψηλές στροφές.

Σε συνδυασμό με τον μεγάλο όγκο αέρα στον μεγάλης διατομής αυλό εισαγωγής της διβάλβιδης κεφαλής, οι κινητήρες Desmo της Ducati με τους πολύ “άγριους” εκκεντροφόρους είχαν (και εξακολουθούν να έχουν) εξαιρετική πλήρωση μείγματος προς τον θάλαμο καύσης και άριστη ποιότητα καύσης σε όλο το φάσμα των στροφών.

Αυτό ισχύει τόσο για τους διβάλβιδους Desmo κινητήρες του Taglioni, όσο και για τους τετραβάλβιδους Desmo κινητήρες του Bordi, όπως φυσικά και για τους πολυκύλινδρους Desmo κινητήρες των MotoGP του Sairu.

Για τον περισσότερο κόσμο τα δεσμοδρομικά συστήματα κίνησης των βαλβίδων ανακαλύφθηκαν για να μην “καρφώνουν” βαλβίδες οι κινητήρες στις πολύ υψηλές στροφές και ως ένα βαθμό αυτό είχε μια λογική έως τη δεκαετία του 1960 λόγω της μεταλλουργίας της εποχής. Σήμερα όμως μόνο από κατασκευαστικό σφάλμα ή κακή χρήση/ρύθμιση μπορεί να “καρφώσει” βαλβίδα ένας κινητήρας με συμβατικά ελατήρια επαναφοράς.

Το ερώτημα φυσικά είναι γιατί οι άλλοι κατασκευαστές δεν μπήκαν στον κόπο να ασχοληθούν με τα δεσμοδρομικά συστήματα κίνησης των βαλβίδων και “παιδεύονται” τόσα χρόνια με τα ελατήρια επαναφοράς.

Η απάντηση είναι απλή: Κόστος κατασκευής, δυσκολίες συντήρησης για οχήματα καθημερινής χρήσης (συχνότητα ρυθμίσεων, κόστος αναλώσιμων, ακριβή εργατοώρα εξειδικευμένων μηχανικών). Η ίδια η Ducati εξήγησε με τον καλύτερο τρόπο τους λόγους που δεν έβαλε Desmo στον V4 της Multistrada και όλοι τους έχουν να κάνουν με… τα λεφτά!

Μην ξεχνάμε πως Desmo είχαν μόνο μερικά special μοντέλα της Ducati. Το Desmo έγινε σήμα κατατεθέν της Ducati στα τέλη της δεκαετίας του ’80 επειδή κατασκεύαζε μόνο τον κινητήρα του Pantah για όλα τα μοντέλα της.

Στις μέρες μας, η πλειοψηφία των κατασκευαστών χρησιμοποιεί πνευματικές βαλβίδες για τους κινητήρες της F1 και των MotoGP, καθώς ο αέρας έχει απείρως μικρότερο βάρος και αδράνεια από οποιοδήποτε ελατήριο επαναφοράς. Για τους κινητήρες παραγωγής, η “συμβατική” λύση των ελατηρίων επαναφοράς επαρκεί και με το παραπάνω.

 


 

 

Καύσιμα: Τρελές ιπποδυνάμεις από μία σταγόνα

Ο ρόλος της χημείας των καυσίμων στους κινητήρες
Μπάμπη Μέντη
Από τον

Μπάμπη Μέντη

28/11/2022

Στους αγώνες Dragster στις ΗΠΑ στην κορυφαία κατηγορία συμμετέχουν αυτοκίνητα με διβάλβιδους V8 κινητήρες και ωστήρια για την κίνηση των βαλβίδων, όπου με τη βοήθεια ενός μηχανικού υπερσυμπιετή έχουν απόδοση που ξεπερνά τους 4.500 ίππους (όχι δεν κάναμε λάθος, βγάζουν πάνω από τέσσερεις ΧΙΛΙΑΔΕΣ ίππους και τα καλύτερα από αυτά έως και 10.000 ίππους!!!) και σε μόλις 400 μέτρα από στάση πιάνουν τελική ταχύτητα άνω των 539km/h. Την ίδια στιγμή, οι καλύτεροι μηχανολόγοι της Γερμανίας και ολόκληρης της Ευρώπης, μετά από μία δεκαετία έρευνας και εξέλιξης κατάφεραν με το ζόρι να βγάλουν 1.500 ίππους από τον W16 κινητήρα της Bugatti, χρησιμοποιώντας τέσσερα turbo και την τελευταία λέξη της τεχνολογίας για την διαχείριση της τροφοδοσίας. Παρά την συνδρομή και την βοήθεια της Airbus για την αεροδυναμική μελέτη των μεταβλητών αεροτομών της, η Bugatti μόλις που ξεπερνά τα 400km/h και μάλιστα χρειάζεται πάνω από τρία χιλιόμετρα ευθείας για να τα πλησιάσει.

Ποιο είναι το μυστικό που κατέχουν οι Αμερικάνοι “Αγελαδάριδες” και δεν γνωρίζουν οι καλύτεροι επιστήμονες της Ευρώπης; Η απάντηση είναι πολύ απλή!

Δεν υπάρχει απολύτως κανένα μηχανολογικό μυστικό μεταξύ των σχεδιαστών/κατασκευαστών κινητήρων για Dragster και των συναδέρφων τους που σχεδιάζουν και κατασκευάζουν hypercars ή superbike.

Όλη η διαφορά είναι στα καύσιμα που χρησιμοποιούν και αυτό έχει άμεση σχέση με τη σχεδίαση των κινητήρων.

Πως όμως τα καύσιμα επηρεάζουν τη σχεδίαση και την απόδοση ενός κινητήρα;

Αν κατανοήσουμε τί γίνεται μέσα στο θάλαμο καύσης τα πράγματα γίνονται πολύ εύκολα και απλά.

Μόλις το μπουζί δώσει σπινθήρα και το συμπιεσμένο μείγμα αέρα/καυσίμου “εκραγεί”, το έμβολο κατεβαίνει αργά στο πρώτο 1/3 της διαδρομής του, επιταχύνει απότομα στο υπόλοιπο 1/3 της διαδρομής του και επιβραδύνει απότομα στο τελευταίο 1/3 της διαδρομής του, πριν αρχίσει να ανεβαίνει πάλι προς τα πάνω για να διώξει τα καυσαέρια προς την εξάτμιση.

Αυτό σημαίνει πως ο όγκος του θαλάμου καύσης δεν μεγαλώνει αναλογικά στο χρόνο, αλλά είναι μικρός στην αρχή και μετά το πρώτο 1/3 της διαδρομής του εμβόλου ξαφνικά μεγαλώνει απότομα.

Αυτή η απότομη αύξηση του όγκου έχει αποτέλεσμα να πέσει απότομα η πίεση μέσα στο θάλαμο καύσης και τα αέρια χάνουν τη δύναμή τους να σπρώξουν προς τα κάτω το έμβολο με το ίδιο σθένος.

Σε έναν ατμοσφαιρικό κινητήρα παραγωγής που καίει κανονική βενζίνη, τα πάντα αρχίζουν και τελειώνουν στο πρώτο 1/3 της διαδρομής του εμβόλου. Όλη η υπόλοιπη κίνηση που κάνει το έμβολο είναι περισσότερο χάρη στην ορμή που έχει αποκτήσει ο στρόφαλος.

Ακριβώς γι΄αυτό τον λόγο, στους ατμοσφαιρικούς κινητήρες είναι τόσο κρίσιμος ο σχεδιασμός ενός θαλάμου καύσης που θα εξασφαλίζει την ταχύτερη δυνατή ολοκλήρωση της καύσης του μείγματος.

Η βενζίνη είναι ένα καύσιμο που “καίγεται” πολύ γρήγορα και αν το συμπιέσεις ακόμα γρηγορότερα. Αν μάλιστα το συμπιέσεις υπερβολικά αυταναφλέγεται, κάτι που δεν θέλεις να συμβεί όσο το έμβολο ανεβαίνει προς τα πάνω.

Καθώς θέλουμε να εκμεταλλευτούμε στο μέγιστο το χρονικό διάστημα που το έμβολο εκτελεί το πρώτο 1/3 της διαδρομής του, η ECU του κινητήρα φροντίζει να μεταβάλει τη χρονική στιγμή που το μπουζί δίνει σπινθήρα και όσο αυξάνονται οι στροφές του κινητήρα, τόσο πιο νωρίς δίνει σπινθήρα το μπουζί, ακόμα και πριν το έμβολο φτάσει στο Άνω Νεκρό Σημείο.

Για να αποφευχθεί η καταστροφική πρόωρη αυτανάφλεξη της βενζίνης, υπάρχουν πρόσθετα που εξασφαλίζουν ένα σταθερό επίπεδο “οκτανίων” και επιτρέπουν στους σχεδιαστές κινητήρων να καθορίζουν τη σωστή συμπίεση στο θάλαμο καύσης και την σωστή στιγμή που θα δώσει σπινθήρα το μπουζί σε κάθε εύρος στροφών.

Όσο μεγαλύτερος ο αριθμός των οκτανίων της βενζίνης, τόσο μεγαλύτερη είναι η συμπίεση που μπορούμε να χρησιμοποιήσουμε.

Όσο μεγαλύτερη η συμπίεση, τόσο το καλύτερο για την απόδοση ενός κινητήρα, καθώς μας επιτρέπει να εκμεταλλευτούμε στο έπακρο τον χρόνο που έχουμε στη διάθεσή μας σε αυτό το πρώτο 1/3 της διαδρομής του εμβόλου.

Ο αριθμός των οκτανίων της κοινής βενζίνης καθορίζει τη μέγιστη συμπίεση και την ανάφλεξη που μπορούμε να έχουμε σε ένα κινητήρα, όμως την ίδια στιγμή απαιτεί και συγκεκριμένη συμπίεση από τον κινητήρα.

Ένας κινητήρας με χαμηλή συμπίεση που έχει σχεδιαστεί για να καίει απροβλημάτιστα βενζίνη με λίγα οκτάνια, όχι μόνο δεν πρόκειται να αυξήσει την απόδοσή του αν του βάλεις βενζίνη με πολλά οκτάνια, αλλά υπάρχει το ενδεχόμενο να χάσει σε απόδοση (ιδιαίτερα στις χαμηλές και μεσαίες στροφές όπου η προπορεία της ανάφλεξης δεν επαρκεί).

Στους σύγχρονους κινητήρες και ιδιαίτερα στους κινητήρες με υπερπλήρωση (δηλαδή με υπερσυμπιεστές μηχανικούς/Supercharger ή καυσαερίων/Turbo) υπάρχουν αισθητήρες μέσα στο θάλαμο καύσης που ανιχνεύουν τις πρόωρες αναφλέξεις της βενζίνης και η ECU μεταβάλει την χρονική στιγμή του σπινθήρα του μπουζί (και ταυτόχρονα ρίχνει την πίεση αν πρόκειται για κινητήρα με Supercharger η turbo). Με αυτόν τον τρόπο οι κατασκευαστές μπορούν πλέον να σχεδιάζουν κινητήρες οι οποίοι δεν καταστρέφονται και δουλεύουν μια χαρά αν τους βάλεις βενζίνη λίγων οκτανίων και αποδίδουν καλύτερα αν τους βάλεις βενζίνη πολλών οκτανίων.

Ακόμα όμως και αν εκτοξεύσεις τη συμπίεση στα ύψη μέσα στο θάλαμο καύσης και του βάλεις βενζίνη που δεν αυταναφλέγεται με τίποτα, παρά μόνο με τον σπινθήρα του μπουζί, πάλι το κέρδος αφορά κυρίως το πρώτο 1/3 της διαδρομής του εμβόλου, ακόμα κι αν μιλάμε για κινητήρες με υπερπλήρωση.

Έτσι οι ίδιοι οι κινητήρες των 4500+ ίππων που χρησιμοποιούν στους αγώνες Dragster, βγάζουν μόλις 1000-1500 με κοινή βενζίνη κι αυτό μόνο αν ρυθμίσεις κατάλληλα την ανάφλεξή τους. Αν κρατήσεις την “αγωνιστική” ρύθμιση της ανάφλεξη και τους βάλεις κοινή βενζίνη, όχι μόνο θα βγάλουν με το ζόρι 1500 ίππους αντί για 4500, αλλά το πιθανότερο είναι να διαλυθούν!

Πώς όμως κερδίζουν πάνω από 3000 ίππους χρησιμοποιώντας ειδικά καύσιμα, που είναι τόσο τοξικά ώστε οι οδηγοί να φοράνε ειδικά αεροστεγή κράνη με φίλτρα καθαρισμού του αέρα;

Πολύ απλά, τα καύσιμα αυτά έχουν την ιδιότητα να αυξάνουν τον όγκο των καυσαερίων που παράγουν μετά την ανάφλεξη του μείγματος από το μπουζί για πολύ μεγαλύτερο χρονικό διάστημα σε σχέση με την βενζίνη.

Έτσι όταν το έμβολο ξεπεράσει το πρώτο 1/3 της διαδρομής του και ο θάλαμος καύσης αρχίζει να μεγαλώνει απότομα λόγω της αντίστοιχα απότομης επιτάχυνσής του προς τα κάτω, τα καυσαέρια αυτών των ειδικών καυσίμων συνεχίζουν να διογκώνονται, σπρώχνοντας με δύναμη το έμβολο και μάλιστα με την μπιέλα να είναι στην ιδανική γωνία σε σχέση με τον στρόφαλο.

Έτσι ενώ σε έναν κινητήρα βενζίνης το έμβολο (μέσω της μπιέλας) περιστρέφει με δύναμη τον στρόφαλο από τις 0⁰ έως και τις 30⁰ και μετά αρχίζει να “ξεφουσκώνει” έντονα, στους κινητήρες των dragsterμε τα “τοξικά” και “βραδύκαυστα” καύσιμα συνεχίζουν να “φουσκώνουν” ακόμα και όταν ο στρόφαλος ξεπεράσει τις 100⁰, οπότε και παράγουν τριπλάσιο έργο.

Μάλιστα είναι τόσο μεγάλη η διάρκεια της ολοκλήρωσης της διόγκωσης των καυσαερίων, που το βασικό πρόβλημα των σχεδιαστών κινητήρων Dragster στις κατηγορίες που επιτρέπονται τέτοιου είδους καύσιμα είναι να την περιορίσουν στο σημείο που το έμβολο αρχίζει να “φρενάρει” απότομα πλησιάζοντας το Κάτω Νεκρό Σημείο.

Άλλωστε δεν είναι καθόλου τυχαίο που στους κινητήρες Dragster οι συχνότερες ζημιές είναι στην περιοχή των στροφάλων, ενώ στους κινητήρες βενζίνης είναι στα έμβολα και τις μπιέλες. Δεν μιλάμε για ζημίες που οφείλονται σε κακή λίπανση, όπως κουζινέτα στροφάλου κ.τ.λ. Μιλάμε για κομμένους στροφάλους και λιωμένα έμβολα.

Κι αυτό συμβαίνει διότι στους κινητήρες βενζίνης οι σχεδιαστές αναζητούν τα όρια της μέγιστης απόδοσης στην αρχική διαδρομή του εμβόλου, ενώ στους κινητήρες με τα “αγωνιστικά” καύσιμα αναζητούν τα όρια στη μέγιστη απόδοση προς το τέλος της διαδρομής του εμβόλου.

Έτσι στους Dragster κινητήρες με πάνω από 2000-2500 ίππους συνηθίζουν να χρησιμοποιούν μπιέλες αλουμινίου που απορροφούν τις δυνάμεις και δεν είναι τόσο σκληρές όπως οι ατσάλινες ή οι τιτανίου. Καλύτερα να πετάς τις μπιέλες μετά από κάθε αγώνα, παρά τον στρόφαλο και ολόκληρο το μπλοκ…

Με βάση όλα τα παραπάνω, θα έχει πολύ μεγάλο ενδιαφέρον να δούμε με ποιον τρόπο τα συνθετικά καύσιμα στα MotoGP θα επηρεάζουν τον σχεδιασμό των κινητήρων και φυσικά την απόδοσή τους.