Η ιστορία του Carbon-Fibre

Ο θησαυρός είναι από άνθρακα...
Θάνο Αμβρ. Φελούκα
Από τον

Θάνο Αμβρ. Φελούκα

9/12/2016

Γράφαμε στο περιοδικό πριν από οκτώ χρόνια, πως έπρεπε το ανθρακόνημα να αντιμετωπιστεί διαφορετικά από τους κατασκευαστές για να φτάσει κάποτε να γίνει δομικό στοιχείο της μοτοσυκλέτας. Πως στόχος δεν θα πρέπει να είναι να αντιγράψει το αλουμινένιο πλαίσιο, αλλά να χρησιμοποιηθεί τελείως διαφορετικά και μόνο τότε θα ξεχωρίσει. Θα έπρεπε να αναθεωρηθεί η ίδια η λειτουργία του πλαισίου και να υποχωρήσει ο βαθμός ακαμψίας του όσο βελτιώνονται άλλοι τομείς, όπως οι αναρτήσεις και τα ελαστικά αφού οι μοτοσυκλέτες δεν πρέπει να αντιμετωπίζονται ως ξεχωριστά μηχανολογικά κομμάτια, αλλά ως ένας οργανισμός με ποικίλους βαθμούς ελαστικότητας, συντονισμού και απόσβεσης. Το ανθρακόνημα -είχαμε γράψει- είναι ιδανικό για να λύσει τέτοια θέματα συνεργασίας μέσα σε κατασκευές. Και δείχνει και ωραίο...

 

Το 2017 μπαίνουν σε παραγωγή, περιορισμένη και για πολύ γερά πορτοφόλια, δύο μοτοσυκλέτες φτιαγμένες από carbon. Για να φτάσουμε σε αυτό το σημείο το σύνθετο αυτό υλικό έχει σημειώσει μία πολύ μακρά πορεία. Μόλις τα τελευταία χρόνια, και με την βοήθεια της τεχνολογίας που με την ακριβή προσομοίωση βοηθά τους μηχανικούς να γλιτώνουν εργατοώρες από δοκιμές, έχουν κατανοηθεί πλήρως οι δυνατότητες του υλικού ως δομικού στοιχείου της μοτοσυκλέτας.

Οι συνδυασμοί και οι ιδιότητες που μπορεί να του προσδώσει εκείνος που το φτιάχνει, είναι πρακτικά ανεξάντλητες και η πληθώρα αυτή σε επιλογές καθιστά την εξέλιξη χαώδη. Μπορεί κάποιος να του δώσει όση σκληρότητα και ελαστικότητα θέλει, και αυτό σημαίνει ότι χρειάζεται να αναθεωρήσει από την αρχή την μοτοσυκλέτα ως σύνολο, πριν φτάσει να το χρησιμοποιήσει ως δομικό στοιχείο. Αυτά γράφαμε και πίσω στο 2008, οπότε πάμε να κάνουμε μία σύντομη αναδρομή στα πρώτα βήματα του carbon για να δούμε πώς φτάσαμε στην Superleggera της Ducati και το HP4 Race της BMW…

 

Το ενισχυμένο ανθρακονημάτινο πλαστικό (CFRP), είναι εξαιρετικά διαδεδομένο συνθετικό, χάρη στη χρήση του στα αεροσκάφη, τα αγωνιστικά αυτοκίνητα και ως ελαφρύ διακοσμητικό σε άπειρα προϊόντα. Παραμένει σχετικά ακριβό, λόγω της πολύπλοκης χημικής διαδικασίας και της χρονοβόρας κατασκευής του.

Το ανθρακόνημα -όπως το ξέρουμε τώρα- εφευρέθηκε από Άγγλους χημικούς, αμέσως μετά τον δεύτερο παγκόσμιο πόλεμο, αλλά δεν ήταν ευρέως διαδεδομένο, πιο συγκεκριμένα: Οι ιδιότητες του carbon και η διαδικασία δημιουργίας του, είναι γνωστές πριν από το 1900, ωστόσο χρειάστηκαν σχεδόν 60 χρόνια για να βρεθεί τρόπος να παραχθεί σύνθετο υλικό με υψηλή πυκνότητα σε carbon. Ένα από τα άλματα στην πρόοδο οφείλεται στον Ιάπωνα Akio Shindo αλλά τελικά ήταν η αμερικάνικη εταιρία HITCO που λίγα χρόνια αργότερα κατασκεύασε πρώτη υλικό με 99% περιεκτικότητα σε carbon. Η εταιρία αυτή είναι μέχρι και σήμερα πρωτοπόρος στην παραγωγή σύνθετων υλικών, ωστόσο στις αρχές τις δεκαετίας του ’60, ήταν –τελικά- η Βρετανική Αεροπορία που βρήκε την καλύτερη χρήση για το carbon fibre και κατοχύρωσε τις αντίστοιχες πατέντες, τις οποίες στην συνέχεια παραχώρησε με συμβόλαια σε αγγλικές βιομηχανίες.

 

Εκείνη την εποχή, έπρεπε να τελειοποιηθεί η διαδικασία συνδυασμού του προπανίου (ή του προπυλενίου) και της αμμωνίας -η προηγούμενη διαδικασία περιλάμβανε τη χρήση κυανιδίων υδρογόνου, με προφανή προβλήματα και όχι ιδιαίτερα καλά αποτελέσματα. Αυτό το υλικό, μετά πολυμερίζεται, με τις ίνες να μεγαλώνουν και να οξειδώνονται επιπλέον πριν ψηθούν στους 2.500°C, μέσα σε ένα πλούσιο σε άζωτο περιβάλλον ώστε να μετατραπεί το πλαστικό σε άνθρακα ή γραφίτη. Τα νήματα στη συνέχεια πλέκονται μεταξύ τους, για να σχηματίσουν το ανθρακόνημα ή απλώνονται ώστε να σχηματιστούν λωρίδες παράλληλων ινών, γνωστές και ως UD (Uni-Directional). Αυτά αποτελούν τη βάση για την κατασκευή εξαρτημάτων όταν οι ίνες συνδυάζονται με διαμορφωμένες ρητίνες. Οι ρητίνες είναι κυρίως εποξικές, καθώς οι ιδιότητές τους ταιριάζουν καλύτερα με τις ιδιότητες των ινών -αν και χρησιμοποιείται μερικές φορές πολυεστέρας ή βινύλιο.

 

Οι διάφορες μορφές των ανθρακονημάτων
Υπάρχει ένας μεγάλος αριθμός μεταβλητών παραμέτρων, που μας έρχεται στο μυαλό, όταν σκεφτόμαστε ανθρακονημάτινες κατασκευές. Αρχικά, υπάρχουν δύο βασικοί τύποι συνδυασμού των δύο υλικών:

Το wet-lay-up, που είναι η ίδια διαδικασία παραγωγής με του fiberglass, όπου στεγνές ίνες απλώνονται μέσα σε ένα καλούπι και προστίθεται ρητίνη αναμεμιγμένη με υγρό σκληρυντικό ή καταλύτη με το χέρι, χρησιμοποιώντας πινέλο, βούρτσα ή σπρέι -ενώ σε πιο σωστές διαδικασίες, ψεκάζεται ή εκχέεται μηχανικά. “Σακούλες” με κενό αέρος ή κλειστά καλούπια μπορεί να χρησιμοποιηθούν, για να βελτιώσουν τη συνέχεια και την ακρίβεια της διαδικασίας.

Το pre-peg, όπου οι UD ίνες έρχονται ήδη εμποτισμένες με την κατάλληλη ποσότητα ρητίνης. Αυτές πρέπει μετά να ενωθούν μέσω θερμικής διαδικασίας σε σακούλες με κενό αέρος, είτε σε φούρνο μόνο με ατμοσφαιρική πίεση, για παράδειγμα, είτε χρησιμοποιώντας παραπάνω πίεση και θερμοκρασία σε κλίβανο, για να επιτευχθούν καλύτερα αποτελέσματα.

Διαφορετικοί τύποι ινών είναι διαθέσιμοι, που ποικίλουν από άκαμπτες αλλά πιο εύθρυπτες ίνες, μέχρι εξαιρετικά δυνατές αλλά με μικρότερη ακαμψία ίνες, ενώ υπάρχουν και οι πιο κοινές και φθηνές ίνες, λιγότερο ισχυρές και άκαμπτες σαν αυτές που χρησιμοποιούνται στα καλάμια ψαρέματος. Υπάρχουν στο εμπόριο διαφορετικοί τύποι “πλεξίματος” των ινών πέρα από την UD, ενώ μερικές φορές χρησιμοποιούνται και άλλα υλικά, όπως γυαλί ή ίνες αραμιδίου ή διακοσμητικές ενισχύσεις. Οι ίνες μπορούν να απλωθούν προς μια συγκεκριμένη κατεύθυνση για να προσδώσουν συγκεκριμένα ενισχυτικά χαρακτηριστικά σε ορισμένες περιοχές, ενώ μπορούν να συνδυαστούν σε διαφορετικές στρώσεις ώστε να έχουν σύνθετες ιδιότητες.

Για κύριες δομικές εφαρμογές, στρώσεις από συγκεκριμένες ίνες με διαφορετικούς συντελεστές συνδυάζονται με άλλα βασικά υλικά. Συνήθως πρόκειται για αλουμίνιο ή αραμίδιο Nomex, το οποίο έχει επίστρωση με ρητίνη ανθεκτική στις υψηλές θερμοκρασίες, ενώ μπορεί επίσης να είναι και απλά υλικά, όπως το κοντραπλακέ ή η μπάλσα. Αυτά τα υλικά προσθέτουν πάχος, γι’ αυτό και αυξάνεται η στρεπτική ακαμψία των λεπτών ανθρακονημάτινων κομματιών, έτσι ώστε να μπορούν να χρησιμοποιηθούν σε ένα μεγάλο φάσμα εφαρμογών, σε τμήματα με μεγάλη καταπόνηση όπως στα ουραία τμήματα των αεροσκαφών ή στα μονοθέσια της F1.

Υπάρχουν επίσης πολλά είδη ρητινών που μπορούν να φτιαχτούν ειδικά για συγκεκριμένες εφαρμογές, οπότε δημιουργείται μια ποικιλία ουσιαστικά άπειρων συνθετικών, που μπορούν να χρησιμοποιηθούν σε εξειδικευμένες κατασκευές ή σε διακοσμητικές εφαρμογές. Ο λόγος ύπαρξης αυτής της ποικιλίας συνθετικών είναι φυσικά οι ιδιότητες των υλικών, που προσφέρουν σημαντικά οφέλη στο βάρος και στην αντοχή, σε σχέση με τα κράματα αλουμινίου και ατσαλιού, όπως δείχνει κι ο σχετικός πίνακας.

 

 

 

 Όριο θραύσης (kg/mm2)

Πυκνότητα (gr/cm3)

Ειδική αντοχή

Ανθρακόνημα

3,50

1,75

2,00

Ατσάλι

1,30

7,90

0,17

 

Όπως φαίνεται, το ανθρακόνημα έχει αντοχή στην θραύση σχεδόν τρεις φορές μεγαλύτερη από το ατσάλι, αλλά παρ' όλα αυτά είναι 4,5 φορές πιο αραιό. Όταν συνδυαστεί με υλικά που έχουν ως χαρακτηριστικό τους την προσχεδιασμένη παραμόρφωση κάτω από φορτίο, το ανθρακόνημα έχει αποδειχθεί ανεκτίμητο στις κατασκευές για απόσβεση κρούσης, ακόμη και σε μικρά τμήματα όπως τα ρύγχη των αεροσκαφών. Η αξία του, λόγω του χαμηλού του βάρους, οδήγησε στην υιοθέτησή του από τις μεγάλες αεροπορικές κατασκευές, όπως το νέο Dreamliner 787 της Boeing και το Airbus 380, δημιουργώντας έλλειψη από το υλικό, παρά τους περιορισμούς και το κόστος της παραγωγής.

 

Το Carbon στα πλαίσια μοτοσυκλετών, πολύ πριν την σημερινή εποχή που μπαίνει στην παραγωγή - έστω και περιορισμένη
 
Πολλοί άνθρωποι, κατά τη διάρκεια του Τσεχοσλοβάκικου GP το 1990, ανυπομονούσαν να δουν το ντεμπούτο ενός μοναδικού, νέου μηχανολογικού concept, που κρυβόταν στα πιτς της ιταλικής ομάδας της Cagiva. Ο ενθουσιώδης αλλά και έμπειρος αναβάτης, ο Randy Mamola, θα οδηγούσε για πρώτη φορά το C590, το δίχρονο 500 που διέθετε ένα εξ ολοκλήρου ανθρακονημάτινο πλαίσιο. Αντί για τις συνήθεις αλουμινένιες δοκούς που στήριζαν τα πάντα, η μοτοσυκλέτα είχε μια μαύρη γυαλιστερή στεφάνη από το εξωτικό υλικό, που είχε φέρει την επανάσταση στον χώρο των αγωνιστικών αυτοκινήτων κατά τη δεκαετία του '80.

Ενώ το ανθρακόνημα είχε υιοθετηθεί για να αντικαταστήσει το fiberglass, ως το καταλληλότερο υλικό για τα κοστούμια, ήταν η πρώτη φορά που παρουσιάστηκε ως δομικό στοιχείο της μοτοσυκλέτας. Η μοτοσυκλέτα θα έτρεχε επίσης με το νέο πλαίσιο στον επόμενο αγώνα, στο Ουγγρικό GP, αλλά τα προβλήματα προσαρμογής στο νέο υλικό, σήμαιναν πως θα υπήρχε αναβολή επ' αόριστον. Μέσα στον πυρετό των αγώνων, η σχετικά μικρή ομάδα δεν είχε τον χρόνο ή τον προϋπολογισμό για να επιμείνει στο καινούριο πλαίσιο, και επέστρεψε στο μεταλλικό.

το ανθρακόνημα έχει αντοχή στην θραύση σχεδόν τρεις φορές μεγαλύτερη από το ατσάλι, αλλά παρ' όλα αυτά είναι 4,5 φορές πιο αραιό

Ενώ το ανθρακόνημα ήταν γνωστό στους αγώνες μοτοσυκλετών για σχεδόν μια δεκαετία, ελάχιστες μοτοσυκλέτες το χρησιμοποίησαν -γι' αυτό και η Cagiva είχε ελάχιστα δεδομένα για να αντλήσει πληροφορίες. Πάντως, λίγα χρόνια πριν οι μοτοσυκλέτες των GP εξοικειωθούν με το υλικό, πολλοί μικροί εξειδικευμένοι κατασκευαστές, είχαν αντιληφθεί τα σημαντικά πλεονεκτήματα που διέθετε το ανθρακόνημα. Ίσως ο σημαντικότερος όλων αυτών, να ήταν ο Νεοζηλανδός αρχιτέκτονας John Britten, με το αγωνιστικό V2 που κατασκεύασε. Εξελιγμένη μέσα από διαφορετικές παραλλαγές, από το 1987 μέχρι το 1991 που κατέληξε στην τελική της μορφή, η μοτοσυκλέτα διέθετε μια ολοκληρωτικά ανθρακονημάτινη ραχοκοκαλιά. Από το 1991, κέρδισε οκτώ αγώνες στη Daytona και το 1995 το παγκόσμιο πρωτάθλημα BEARS, ενώ έγινε ένα από τα κύρια εκθέματα στο μουσείο Guggenheim.

Στο δεύτερο πρωτότυπό του (το aero d-one), ο Britten χρησιμοποίησε ανθρακόνημα τόσο για την έδραση του κινητήρα, όσο και για να ενώσει τα συστήματα μπροστινής και πίσω ανάρτησης. Μέχρι το 1992, η μοτοσυκλέτα είχε εξελιχθεί, με ένα μισό φέρινγκ, έναν κινητήρα που είχε σχεδιάσει και κατασκευάσει ο ίδιος ο Britten, ένα ανθρακονημάτινο ψαλίδι και ανθρακονημάτινο μπροστινό, αντί ενός συμβατικού τηλεσκοπικού πιρουνιού.

Αντίπαλος του Britten στο πρωτάθλημα BEARS (British European and American Racing Series), ήταν το Triumph Taylormade / Saxon, το οποίο αν και είχε αλουμινένιο σωληνωτό πλαίσιο, έκανε εκτεταμένη χρήση ανθρακονήματος στο κοστούμι του, και στους αεραγωγούς που τροφοδοτούσαν με αέρα το τοποθετημένο προς τα πίσω ψυγείο του. Αυτό, είχε σχεδιαστεί από τον John McQuilliam, ο οποίος μελέτησε πολύ το ανθρακόνημα, φτάνοντας στη θέση του αρχι-σχεδιαστή στην ομάδα Jordan στα GP (πλέον, Spyker F1Team).

Ο John είχε επίσης εμπλακεί εκείνη την εποχή (το 1993) με ένα άλλο ανθρακονημάτινο πρωτότυπο πλαίσιο, από τον Βρετανό ειδικό στα πλαίσια, Hejira, το οποίο ήταν αντίγραφο του αντίστοιχου ατσάλινου. Όπως και του Cagiva, το δοκίμασαν και το εγκατέλειψαν. Το Triumph διέθετε επίσης ανθρακονημάτινες ζάντες με αλουμινένια κέντρα.

Και ο Britten χρησιμοποιούσε ζάντες από συνθετικό υλικό, αρκετά όμοιες με αυτές που πουλάνε η Dymag και η Blackstone Tek. Το όφελος από αυτούς τους τροχούς, είναι η σημαντικά καλύτερη συμπεριφορά και ο έλεγχος, με μικρότερη αδράνεια και ελαφρύτερη μη αναρτώμενη μάζα, ενώ η αντοχή τους είναι μεγαλύτερη σε σχέση με τους αντίστοιχους αγωνιστικούς τροχούς από μαγνήσιο.

 

Το ανθρακόνημα στην παραγωγή
 
Η χρήση του ανθρακονήματος ως δομικό στοιχείο έμεινε περιορισμένη σ' αυτούς τους μικρούς κατασκευαστές. Πολύ λίγες μοτοσυκλέτες παραγωγής έχουν χρησιμοποιήσει το ανθρακόνημα ως δομικό στοιχείο, λόγω του μεγάλου κόστους και των δυσκολιών που επιφέρει στις αυτοματοποιημένες γραμμές παραγωγής. Η πιο συχνή χρήση του ήταν σε αγωνιστικά φέρινγκ, αλλά και σε μερικά φέρινγκ μοτοσυκλετών δρόμου, όπως το Bimota YB8 Furano, και γύρω από τα όργανα του εξωτικού Mantra, καθώς αυτά είναι από ξύλο!

Η Bimota είχε επίσης κατασκευάσει φτερά από ανθρακόνημα, όπως και η Ducati. Η Ducati είχε αρχικά χρησιμοποιήσει ανθρακόνημα και στην κατασκευή φιλτροκουτιών για την περιορισμένη παραγωγή των 916, ώστε να αυξηθεί η ακαμψία του πλαισίου, ενώ το Bimota SB8R -το οποίο παρουσιάστηκε 1997- έχει ανθρακονημάτινες πλάκες στήριξης του ψαλιδιού, πάνω στις οποίες βιδώνει το αλουμινένιο πλαίσιο. Η Honda έκανε μεγάλη αίσθηση το 1992 με την περιορισμένης παραγωγής NR 750, η οποία εκτός από τα μοναδικά οβάλ έμβολα, είχε ένα εξ ολοκλήρου ανθρακονημάτινο κοστούμι “CFRP”. Το κέρδος σε βάρος βέβαια δεν είχε άμεσο αντίκτυπο, καθώς ξεπερνούσε τα 220 κιλά συνολικά.

 

Από τα μέσα της δεκαετίας του '90, ένας μεγάλος αριθμός από προμηθευτές after market, προσέφεραν εξαρτήματα (όχι δομικά στοιχεία) όπως καπάκια και φτερά, καθώς το ανθρακόνημα γινόταν πιο γνωστό και διαθέσιμο, κυρίως λόγω της χρήσης του στους αγώνες. Στην πραγματικότητα, το ανθρακόνημα είχε τέτοιο αντίκτυπο στα τέλη της δεκαετίας του '90, που πολλές μοτοσυκλέτες παραγωγής, είχαν πολλά πλαστικά κομμάτια διακοσμημένα με αυτοκόλλητα που έμοιαζαν με ανθρακονήματα.

Εκείνη την εποχή πολλές αγωνιστικές ομάδες χρησιμοποιούσαν αυτό το υλικό, για περισσότερα πράγματα απ’ ό,τι το φέρινγκ και τα φρένα -όπως για την κατασκευή της ουράς της μοτοσυκλέτας ή για τα καπάκια των κινητήρων και των κεφαλών. Επίσης σημαντικό ήταν όμως και το γεγονός, ότι πολλοί είχαν εγκαταλείψει τη χρήση του σε βασικά μέρη, όπως το πλαίσιο και το ψαλίδι, παρά την επιτυχία του Britten -που όμως δεν είχε τρέξει σε επίπεδο GP.

Η Cagiva ήταν η πρώτη εταιρεία που δοκίμασε στους αγώνες ένα πλαίσιο και ψαλίδι εξ ολοκλήρου από ανθρακόνημα. Δυστυχώς, η ελλιπής γνώση πάνω στη νέα τεχνολογία και ο μειωμένος προϋπολογισμός, οδήγησαν σε εγκατάλειψη του σχεδίου

Η Suzuki ήταν επίσης ανάμεσα στις εταιρίες που δοκίμασε ένα ανθρακονημάτινο πλαίσιο το οποίο επίσης εγκαταλείφθηκε, την στιγμή που σε έναν παράλληλο κόσμο εκείνο των αυτοκινήτων, το carbon έκανε μία διαφορετική καριέρα… Η Cagiva είχε στενούς δεσμούς με τη Ferrari, κι αυτή η σχέση ενθάρρυνε την ανταλλαγή τεχνολογίας με τη λογική “αφού το ανθρακόνημα είναι πολύ ακριβό και δουλεύει μια χαρά ως βασικό δομικό στοιχείο για τα F1, σίγουρα μπορεί να κάνει το ίδιο και τις μοτοσυκλέτες των GP”. Στην F1 παρουσιάστηκε πρώτη φορά το ανθρακόνημα το 1981, με τη Lotus και τη McLaren να διαθέτουν ανθρακονημάτινο πλαίσιο. Η Lotus ήταν κατά κάποιο τρόπο “άχαρη” στην αντιγραφή του προηγούμενου αλουμινένιου πλαισίου για το μονοθέσιό της, με κομμένα και ραμμένα ανθρακονημάτινα κομμάτια, αλλά το MP4/1 της McLaren έδειξε το μέλλον, με ένα πιο ψαγμένο πλαίσιο, εξελιγμένο από την αμερικάνικη εταιρεία διαστημικής τεχνολογίας, Hercules.

Τα προτερήματα μιας κατασκευής που ήταν ελαφρύτερη, πιο ανθεκτική και με καλύτερο αεροδυναμικό προφίλ, έγιναν άμεσα εμφανή. Δύο σημαντικά οφέλη που οδήγησαν στη γενικότερη υιοθέτησή του, είναι η ακαμψία του και η δυνατότητά του για ελεγχόμενες παραμορφώσεις κατά την κρούση. Επίσης το γεγονός ότι σε αυτό το σπορ, το κόστος δεν αποτελεί ιδιαίτερο πρόβλημα, ήταν επίσης σημαντικό.

 

Ακαμψία: Σύμμαχος κι εχθρός
Τα κύρια χαρακτηριστικά της υψηλής αντοχής και του μικρού βάρους είναι ελκυστικά, αλλά ενώ το ανθρακόνημα είναι ελαφρύτερο, μπορεί να είναι υπερβολικά ισχυρό για μερικές εφαρμογές. Όταν το ανθρακόνημα μπήκε αρχικά στις μοτοσυκλέτες των GP, η τάση ήταν να αυξάνεται η ακαμψία των αλουμινένιων πλαισίων, ώστε να συνεργάζονται με τα ελαστικά και τις αναρτήσεις της εποχής. Το άλμα που έκανε η Cagiva, ήταν το επόμενο λογικό στάδιο στην κατασκευή αγωνιστικών μοτοσυκλετών -ιδιαίτερα με την άνθηση που γνώριζε η χρήση του υλικού στην F1.

Οι μετέπειτα εξελίξεις έδειξαν, πως ενώ οι αγώνες μοτοσυκλετών εξελίσσονταν παράλληλα με τη βελτίωση των ελαστικών, τα πολύ άκαμπτα πλαίσια έφερναν ουσιαστικά αντίθετα αποτελέσματα -ειδικά με τις πολύ μικρές διαδρομές των αναρτήσεων. Στη διάρκεια εξαιρετικά μεγάλων κλίσεων, οι αναρτήσεις είναι σχεδόν αναποτελεσματικές στο να αποσβέσουν τις ανωμαλίες -αν και μπορούν να αντιδράσουν πριν και μετά τη μεταφορά βάρους. Κάτω από τέτοιες συνθήκες, αυτό που χρειάζεται είναι κάποια ελαστικότητα, τόσο στις αναρτήσεις όσο και στο ίδιο το πλαίσιο.

Η Cagiva το ανακάλυψε αυτό, κατά τη διάρκεια των δύο αγώνων πίσω στα 1990, με τον Mamola και τον Ron Haslam, οι οποίοι βρήκαν τη ρύθμιση των αναρτήσεων και την πληροφόρηση από το πλαίσιο τόσο διαφορετικά, που οι νορμάλ ρυθμίσεις τους για τις μοτοσυκλέτες δεν δούλεψαν καθόλου, και η μοτοσυκλέτα δημιούργησε περισσότερα θέματα από αυτά που έλυνε. Αν και εγκατέλειψαν το πλαίσιο, αυτό δεν εμπόδισε την Cagiva να διατηρήσει το ανθρακονημάτινο ψαλίδι (μειώνοντας το μη αναρτώμενο βάρος) μέχρι την απόσυρση της ομάδας από τους αγώνες, το 1995.

Παρ' όλα αυτά τα θέματα, οι αγωνιστικές μοτοσυκλέτες από τα μέσα της δεκαετίας του '90 είχαν κάνει αρκετή χρήση των ανθρακονημάτων σε άλλους τομείς. Εκτός από τα φέρινγκ που έγιναν όσο πιο λεπτά και ελαφριά γίνεται, ενώ άντεχαν σε ταχύτητες των 320 χιλιομέτρων την ώρα, το ανθρακόνημα χρησιμοποιούταν στα φτερά και στα καπάκια των κινητήρων. Επίσης, το ανθρακόνημα είχε αντικαταστήσει το αφαιρούμενο αλουμινένιο υποπλαίσιο ενώ χρησιμοποιούταν και για την ενίσχυση των φιλτροκουτιών, των ρεζερβουάρ και των εξατμίσεων.

Οι ομάδες της Aprilia και της Ducati στα MotoGP είχαν δοκιμάσει ανθρακονημάτινα καλάμια πιρουνιών διαμέτρου 42 χιλιοστών, αλλά λόγω των προβλημάτων που δημιουργούν οι διαφορετικοί συντελεστές ακαμψίας, ή και του ότι δεν υπήρχε κανένα ουσιαστικό όφελος, σε σχέση με τα αντίστοιχα αλουμινένια των 50 χιλιοστών, σταμάτησαν τη χρήση τους.

 

Πριν από σχεδόν δεκαπέντε χρόνια, η πιο σύγχρονη εφαρμογή της τεχνολογίας του carbon ήταν στα αγωνιστικά φρένα, που πρώτη φορά είδαμε στα μέσα της δεκαετίας του '80 στα εμπορικά αεροσκάφη και στην F1. Αυτοί οι δίσκοι από carbon ήταν εντελώς ακατάλληλοι για χρήση στον δρόμο, καθώς η απαιτούμενη θερμοκρασία λειτουργίας τους έπρεπε να είναι μεταξύ 300°C και 600°C. Ήταν επίσης πολύ ακριβοί, λόγω της χρονοβόρας διαδικασίας παραγωγής (τρεις με έξι μήνες), με τον κάθε δίσκο να κοστίζει τότε περίπου €3.500. Οι μοτοσυκλέτες των GP τρέχουν συχνά με ανθρακονημάτινα προστατευτικά, που απομακρύνουν τη ζέστη από την επιφάνεια των carbon δίσκων, ενώ αν είναι “βρόχινος” ο αγώνας, αντικαθίστανται με ατσάλινους δίσκους και αντίστοιχα τακάκια.

Εκείνη την εποχή είδαμε από την αμερικάνικη Starfire Systems την πρώτη μορφή των carbon-κεραμικών δίσκων, τους Starblade, οι οποίοι κατασκευάζονταν από διήθηση των πολυμερών και πυρόληση (PIP) των ανθρακονημάτων και των καρβιδίων σιλικόνης, φτιάχνοντας μια επιφάνεια δίσκων που μπορούσε να χρησιμοποιηθεί τόσο σε στεγνές όσο και σε βρεγμένες και κρύες συνθήκες, παρέχοντας πλήρη απόδοση στην επιβράδυνση, με βάρος όσο το ένα τρίτο των αντίστοιχων ατσάλινων. Πλέον η τεχνολογία έχει κάνει άλματα και στις μέρες μας η Brembo έχει βελτιώσει σε μεγάλο βαθμό το κόστος των carbon δίσκων αλλά και την διαδικασία ελέγχου που γίνεται με υπερήχους, με τους κεραμικούς δίσκους να είναι πλέον στο προσκήνιο.

Το λάθος που έκανε κάποτε η Cagiva, αλλά και πολλοί άλλοι, όταν σκέφτηκαν αρχικά να χρησιμοποιήσουν συνθετικά υλικά, ήταν ότι προσπάθησαν να αντιγράψουν τα μεταλλικά εξαρτήματα, μετατρέποντάς τα σε ανθρακονημάτινα. Το νέο υλικό ήταν εντελώς διαφορετικό σε ό,τι αφορά τις φυσικές του ιδιότητες σε σχέση με το αλουμίνιο, οπότε γιατί να αντιγράψει κάποιος το σχήμα των μεταλλικών μερών; Αυτό έκαναν αρχικά, όπως παραδέχτηκαν, πολλές αγωνιστικές ομάδες αυτοκινήτων -αλλά πολύ γρήγορα εξοικειώθηκαν με την τεχνολογική χρήση του ανθρακονήματος και επέκτειναν τα μοναδικά χαρακτηριστικά του. Η αλματώδεις εξέλιξή του που βλέπουμε σήμερα, θα είχε έρθει νωρίτερα, αν είχαν ακολουθήσει διαφορετική στάση…

Παρά τις υπερβολικές προδιαγραφές για την προστασία κατά την κρούση, ο λόγος αντοχής προς το βάρος του ανθρακονήματος, μπορεί να προσφέρει πολλά πλεονεκτήματα αν χρησιμοποιηθεί σωστά -και έφτασε η ώρα να επανεκτιμηθεί. Η κληρονομιά από τις πρώτες προσπάθειες της Cagiva (και της Suzuki) με ένα ανθρακονημάτινο πλαίσιο, οδήγησε τον κόσμο της μοτοσυκλέτας στο να εγκαταλείψει την προσπάθεια (αυτό συνέβη και σε πειραματισμούς με εναλλακτικά μπροστινά συστήματα, με πρωτοποριακές προσπάθειες όπως αυτή της Elf).

Είναι ειρωνεία ότι αυτή η καταπληκτική μοτοσυκλέτα, η Britten, συνδύαζε και τις δύο τεχνολογίες. Τα προβλήματα μ' αυτούς τους πειραματισμούς, σήμαιναν μια επιστροφή στις εξαιρετικά εξελιγμένες τεχνολογίες των τηλεσκοπικών πιρουνιών και των ελεγχόμενων ελαστικοτήτων στα αλουμινένια πλαίσια. Η καλύτερη κατανόηση του ανθρακονήματος και η πιο “ψαγμένη” μηχανολογία, ιδιαίτερα στον τομέα της πλέξης των ινών με τις διαφορετικές ιδιότητες, σημαίνει ότι πρέπει να επανεξεταστεί το θέμα του σχεδιασμού.

Η χρήση του δεν πρέπει απλώς να περιοριστεί στην αντικατάσταση μεταλλικών εξαρτημάτων, αλλά να εφαρμοστεί όπως πρέπει. Ο παράγοντας-κλειδί στις ελεγχόμενες ελαστικότητες του πλαισίου και του ψαλιδιού, λύνεται με τον διαφορετικό προσανατολισμό των στρώσεων, ενώ μπορεί πλέον και η ίδια η κατασκευή να αποκτήσει ικανότητες απόσβεσης δυνάμεων. Μερικές ομάδες ρητινών αυτή τη στιγμή προσφέρουν δυνατότητες “υστέρησης”, αλλά με επιπλέον εξέλιξη μπορεί να επιφέρει βελτιωθεί αυτό που ονομάζεται “χημική απόσβεση”.

Αυτός ο συντονισμός, που λειτουργεί ξεχωριστά από την ικανότητα απόσβεσης και απορρόφησης των αμορτισέρ και των ελατηρίων, έχει αποδειχθεί πολύ σημαντικός τα τελευταία χρόνια. Η Yamaha του Παγκόσμιου Πρωταθλητή του 2006, Valentino Rossi, έμεινε πίσω στην αρχή της σεζόν, λόγω προβλημάτων με το chattering. Πρόκειται για ένα κραδασμό χαμηλής συχνότητας που δεν έχει αποσβεστεί, και οφείλεται στην ασυμβατότητα μεταξύ ελαστικού, αναρτήσεων και πλαισίου, ενώ δεν ήταν σύμπτωση ότι μαζί με ένα επανασχεδιασμένο πλαίσιο, η Yamaha χρησιμοποιούσε νέα, με καλύτερη πρόσφυση, ελαστικά της Michelin.

Ο συνδυασμός αυτών των δύο δημιούργησε ένα απροσδόκητο πρόβλημα, όπως και το πολύ άκαμπτο πλαίσιο της Cagiva το 1990. Όπως έδειξαν οι πρόσφατες εξελίξεις και βελτιώσεις, στο συνολικό σχεδιασμό, οι μοτοσυκλέτες δεν πρέπει να αντιμετωπίζεται ως ξεχωριστά μηχανολογικά κομμάτια, αλλά ως ένας οργανισμός με ποικίλους βαθμούς ελαστικότητας, συντονισμού και απόσβεσης. Το ανθρακόνημα είναι ιδανικό, για να λύσει τέτοια θέματα συνεργασίας μέσα σε κατασκευές. Και δείχνει και ωραίο...

Το SB8R ήταν ανάμεσα στις πρώτες μοτοσυκλέτες παραγωγής που χρησιμοποίησαν το ανθρακόνημα ως δομικό στοιχείο σε συνδυασμό με το αλουμίνιο. Οι πλάκες που ενώνονται με το αλουμινένιο πλαίσιο και όπου στηρίζεται το ψαλίδι, είναι φτιαγμένες από carbon

 

 

Η μοτοσυκλέτα - φαινόμενο, η Britten V2 1000 του John Britten, που οι παλιοί αναγνώστες του MOTO είχαν γνωρίσει από τους πρώτους, είχε ανθρακονημάτινο ψαλίδι, πλαίσιο και εναλλακτικό μπροστινό σύστημα!
 

 

Μια από τις πρώτες διαδεδομένες εφαρμογές στις αγωνιστικές μοτοσυκλέτες, είναι τα φρένα των MotoGP, κάτι που για λειτουργικούς -αλλά και οικονομικούς- λόγους, δεν πρόκειται να φτάσει στις μοτοσυκλέτες παραγωγής
 

 

Το ψαλίδι του Mille Due, του πρωτότυπου της Aprilia στο Σαλόνι του Μιλάνου πίσω στο 2008, είχε ανθρακονημάτινο ψαλίδι και άφηνε υπόνοιες πως θα μπορούσε να φτάσει στην παραγωγή
 

 

Η θρυλική NR της Honda, μια μοτοσυκλέτα η οποία εκτός των οβάλ εμβόλων, είχε ολόκληρο κοστούμι από CFRP
 

 

Το Triumph Saxon διέθετε κι αυτό ολόκληρο κοστούμι από ανθρακόνημα, την εποχή που ανταγωνιζόταν το Britten στο παγκόσμιο πρωτάθλημα BEARS
 

Η “υπερδύναμη” του DESMO της Ducati και γιατί δεν το χρησιμοποιεί κανείς άλλος

Η πραγματικότητα απέναντι στις θεωρίες
Μπάμπη Μέντη
Από τον

Μπάμπη Μέντη

29/8/2022

Όποιον κι αν ρωτήσεις στις μέρες μας θα σου πει χωρίς δεύτερη σκέψη πως ο πιο αποδοτικός θάλαμος καύσης για έναν κινητήρα είναι εκείνος που έχει τέσσερις βαλβίδες αντί για δύο. Αρκεί μια γρήγορη ματιά στα τεχνικά χαρακτηριστικά των ισχυρότερων μοτοσυκλετών παραγωγής του κόσμου και θα διαπιστώσεις αμέσως πως όλοι οι τετράχρονοι κινητήρες υψηλής απόδοσης έχουν θαλάμους καύσης με τέσσερις βαλβίδες ανά κύλινδρο. Οι κινητήρες με δύο βαλβίδες ανά κύλινδρο χρησιμοποιούνται πλέον σε μοτοσυκλέτες χαμηλής απόδοσης, όμως ακόμα και σε αυτές τις κατηγορίες που οι επιδόσεις δεν είναι το ζητούμενο, τα τελευταία χρόνια οι κατασκευαστές αρχίζουν να χρησιμοποιούν την “τετράβαλβιδη τεχνολογία” λόγω των διαρκώς αυστηρότερων προδιαγραφών ρύπων, που απαιτούν άριστης ποιότητας καύση.

Μόνο που τα πράγματα δεν ήταν πάντα έτσι και για να φτάσουμε ως εδώ πέρασαν πολλά χρόνια αναζήτησης. Για την ακρίβεια, οι τετραβάλιδοι θάλαμοι καύσης στους κινητήρες μοτοσυκλετών, άργησαν ολόκληρες δεκαετίες μέχρι να καθιερωθούν.

Ως γνωστόν, ένας τετράχρονος κινητήρας εσωτερικής καύσης είναι στην πραγματικότητα μια αντλία αέρα. Όσο περισσότερο αέρα μπορεί να ρουφήξει στη μονάδα του χρόνου και όσο περισσότερο αέρα μπορεί να βγάλει από την εξάτμισή του στη μονάδα του χρόνου, τόσο περισσότερη βενζίνη μπορεί να κάψει αποτελεσματικά. Η λέξη “αποτελεσματικά” είναι το ζητούμενο για έναν κινητήρα, διότι μεγάλη κατανάλωση καυσίμου μπορεί να έχει και ένας κινητήρας που δεν βγάζει πολλά άλογα. Από την άλλη μεριά όμως, η ενέργεια βρίσκεται στη βενζίνη, οπότε δεν μπορείς να βγάλεις μεγάλες ιπποδυνάμεις καίγοντας μόνο δύο σταγόνες βενζίνη και τεράστιες ποσότητες αέρα.

Οπότε η βασική αρχή είναι: Περισσότερα κυβικά = περισσότερος αέρας και περισσότερη βενζίνη, οπότε έχουμε και ισχυρότερο κινητήρα.

Αυτή είναι η κοινή βάση και γι΄αυτό οι κατηγορίες στους αγώνες μοτοσυκλέτας έχουν συνήθως όριο στα κυβικά.

Όμως το παιχνίδι της αναζήτησης μεγαλύτερης ιπποδύναμης χωρίς να αυξήσεις τα κυβικά, μπορεί να γίνει πολύ περίπλοκο και αυτή η περιπλοκότητα είναι η μαγεία του σχεδιασμού ενός υψηλής απόδοσης κινητήρα.

Για τις ανθρώπινες αισθήσεις ο αέρας είναι “άυλος” και ασυναίσθητα τον αντιμετωπίζουμε ως κάτι “ανύπαρκτο” στη διαδικασία της καύσης.

Όμως στην πραγματικότητα ο αέρας έχει μάζα, αναπτύσσει ταχύτητα και η καύση της βενζίνης είναι μια χημική διαδικασία που χρειάζεται χρόνο για να ολοκληρωθεί.

Οποιοδήποτε σώμα με μάζα αναπτύσσει ταχύτητα, αυτομάτως αποκτά ορμή και το ίδιο συμβαίνει με τον αέρα.

Το θέμα εδώ είναι πως η ροή του αέρα δεν είναι γραμμική, αλλά τα μόρια του αέρα θα πρέπει να προσαρμοστούν στην παλινδρομική κίνηση του εμβόλου. Κάθε φορά που κλείνει η βαλβίδα εισαγωγής, ο αέρας επιβραδύνει απότομα και λόγω της ορμής που έχουν τα μόριά του, συμπιέζεται πίσω από τη βαλβίδα εισαγωγής.

 

Όσο μεγαλύτερή είναι η ποσότητα του αέρα και όσο υψηλότερη είναι η ταχύτητα που κινείται μέσα στον αυλό εισαγωγής, τόσο πιο “ισχυρή” είναι η συμπίεση των μορίων του πίσω από την βαλβίδα.

 

Ο χρόνος που ο αέρας παραμένει "συμπιεσμένος" πίσω από τη βαλβίδα εισαγωγής είναι συγκεκριμένος (καθορίζεται από τους παράγοντες που θα αναπτύξουμε παρακάτω) και αν η βαλβίδα δεν ανοίξει τη σωστή στιγμή για να μπει συμπιεσμένος αέρας στον θάλαμο καύσης, τότε αρχίζει να αποσυμπιέζεται και χάνεις το πλεονέκτημα της υπερπλήρωσης.

Το μήκος και το σχήμα των αυλών εισαγωγής καθώς και ο χρονισμός του εκκεντροφόρου που καθορίζει την κίνηση της βαλβίδας είναι άκρως σημαντικά.

Η αμερικάνικη Chrysler ασχολήθηκε πολύ πιο σοβαρά απ’ όλους στα τέλη του ’50 και στις αρχές του ’60 με την κίνηση του αέρα μέσα στον αυλό εισαγωγής, προσπαθώντας να εκμεταλλευτεί με τον καλύτερο δυνατό τρόπο τον συγχρονισμό στις “μπουκιές” συμπιεσμένου αέρα που δημιουργούνται. Ήταν η πρώτη που σχεδίασε μεγάλου μήκους αυλούς εισαγωγής (σε κάποιους κινητήρες της έφταναν σε μήκος έως και το ένα μέτρο!) και στους πειραματισμούς εκείνων των μηχανικών της Chrysler οφείλουμε σήμερα την ύπαρξη των αυλών μεταβλητού μήκους που έχουν τα περισσότερα superbike μέσα στο φιλτροκούτι τους και όλα τα αυτοκίνητα με ατμοσφαιρικούς κινητήρες υψηλής απόδοσης.

Από τη στιγμή που έχουμε κατανοήσει πόσο σημαντικό είναι το σχήμα, η διατομή και το μήκος του αυλού εισαγωγής για την σωστή τροφοδοσία με μείγμα βενζίνης/αέρα ενός ατμοσφαιρικού κινητήρα, μπορούμε πλέον να κατανοήσουμε καλύτερα και τους λόγους που ο Taglioni ερωτεύτηκε το δεσμοδρομικό σύστημα κίνησης των βαλβίδων, αλλά και γιατί οι τετραβάλβιδοι θάλαμοι καύσης άργησαν σχεδόν 40 χρόνια να καθιερωθούν στους αγώνες μοτοσυκλέτας και έπρεπε να φτάσουμε στη δεκαετία του ’80 για να αποτελέσουν βασικό χαρακτηριστικό κάθε τετράχρονου κινητήρα παραγωγής υψηλής απόδοσης.

 

Όπως είναι εύκολα κατανοητό, οι διβάλβιδοι κινητήρες έχουν δύο ΜΕΓΑΛΕΣ (σε διάμετρο και βάρος) βαλβίδες σε κάθε κύλινδρο, ενώ οι τετραβάλβιδοι έχουν τέσσερεις ΜΙΚΡΕΣ βαλβίδες.

Πίσω τους αναγκαστικά βρίσκονται εντελώς διαφορετικού σχήματος και διατομής αυλοί εισαγωγής, που όπως είπαμε πιο πάνω επηρεάζουν την ποσότητα και την ταχύτητα ροής του μείγματος προς τον θάλαμο καύσης.

Οι τετραβάλβιδοι θάλαμοι καύσης και τα δεσμοδρομικά (DESMO) συστήματα κίνησης των βαλβίδων είχαν δοκιμαστεί στους αγώνες αυτοκινήτου ήδη από το 1910, ενώ η Mercedes-Benz είχε κατασκευάσει κινητήρα Desmo πριν από το 1900.

Παρ’ όλα αυτά, οι τετραβάλβιδοι θάλαμοι καύσης είχαν σαφές πλεονέκτημα ισχύος μόνο σε όσους κινητήρες χρησιμοποιούσαν υπερσυμπιεστή, ενώ στις ατμοφαιρικές εκδόσεις των ίδιων κινητήρων δεν είχαν κανένα πλεονέκτημα ισχύος.

 

Από την άλλη μεριά, τα δεσμοδρομικά συστήματα κίνησης των βαλβίδων που χρησιμοποίησε η Peugeot, η Delage και η Mercedes στα αγωνιστικά αυτοκίνητα τους είχαν τεράστια επιτυχία και εξαιρετική αξιοπιστία στους μεγάλης διάρκειας αγώνες αυτοκινήτων των 1000 μιλίων ή των 24 ωρών της εποχής, όμως σε επίπεδο κινητήρων παραγωγής ήταν εξαιρετικά ακριβοί σε κατασκευή και απίστευτα απαιτητικοί σε συχνές ρυθμίσεις και συντήρηση (όπως δηλαδή είναι οι πνευματικές βαλβίδες στις μέρες μας).

 

Μέχρι τα μέσα του 1950, οι διβάλβιδοι θάλαμοι καύσης ήταν ο κανόνας στους αγωνιστικούς ατμοσφαιρικούς κινητήρες μοτοσυκλετών.

 

Το μοναδικό πρόβλημα που είχαν οι μηχανολόγοι της εποχής με τους διβαλβιδους κινητήρες δεν αφορούσε την απόδοσή τους, αλλά το βάρος των μεγάλων βαλβίδων.

Όσο πιο βαριά είναι η βαλβίδα, τόσο πιο σκληρό ελατήριο πρέπει να χρησιμοποιήσεις για να την κάνεις να ακολουθεί πιστά το “αμύγδαλο” του εκκεντροφόρου.

Τα σκληρά ελατήρια είναι πιο βαριά και καθώς είναι κινούμενα μέρη, αποκτούν ορμή ανάλογη του βάρους και της ταχύτητας κίνησής τους.

Από τη στιγμή που η κίνησή τους είναι παλινδρομική, τα ελατήρια των βαλβίδων εμφανίζουν αδράνεια στις αλλαγές κατεύθυνσης της πορείας τους.

Αυτή η αδράνεια του ελατηρίου είναι σοβαρότατο πρόβλημα όταν προσπαθείς να αυξήσεις την ιπποδύναμη ενός τετράχρονου ατμοσφαιρικού κινητήρα, διότι σε εμποδίζει να αυξήσεις το όριο στροφών του και βάζει όρια στο πόσο “άγριο” χρονισμό εκκεντροφόρου θα χρησιμοποιήσεις.

Η μία λύση είναι να βάλεις σε κάθε βαλβίδα δύο ή τρία μικρότερα/ελαφρύτερα ελατήρια αντί για ένα μεγάλο/σκληρό ώστε να μειώσεις την αδράνεια.

Η άλλη λύση είναι να κάνεις πιο προοδευτική τη ράμπα στο “αμύγδαλο” του εκκεντροφόρου από την μεριά που κλείνει η βαλβίδα, σχεδιάζοντας ένα ασύμμετρο “αμύγδαλο” όπου ανοίγει γρήγορα και απότομα την βαλβίδα, αλλά το κλείσιμό της να γίνεται πιο αργά και προοδευτικά, ώστε η αδράνεια του ελατηρίου και της βαλβίδας να είναι μικρότερη λόγω μειωμένης ταχύτητας αλλαγής πορείας, προλαβαίνοντας να ακολουθήσουν το προφίλ του εκκεντροφόρου χωρίς να χάνουν την επαφή μαζί του.

Μια τρίτη λύση που έφερε τα τελευταία χρόνια η BMW με την S1000RR από την εμπλοκή της στην Formula 1, είναι τα μικρά ενδιάμεσα κοκκοράκια μεταξύ εκκεντροφόρου και βαλβίδας, που επιτρέπει να έχεις μεγάλο βύθισμα και απότομη κίνηση της βαλβίδας χρησιμοποιώντας ομαλότερου προφίλ “αμύγδαλα” στους εκκεντροφόρους. Ενδιάμεσα κοκκοράκια έχουν πλέον η τελευταίες γενιές των Yamaha R1 και Kawasaki ZX-10RR.

Κεφαλή ZX-10RR 2021 με ενδυάμεσα κοκκοράκια

Η αδράνεια των ελατηρίων και των βαλβίδων στις υψηλές στροφές έχει ΤΕΡΑΣΤΙΕΣ ΕΠΙΠΤΩΣΕΙΣ στη μέγιστη απόδοση ενός τετράχρονου κινητήρα.

Η βαλβίδα ΠΡΕΠΕΙ να επιστρέφει στην έδρα της και να σφραγίζει τον θάλαμο καύσης στο σωστό χρόνο. Αν δεν επιστρέψει στη θέση της στο σωστό χρόνο και αν δεν πατήσει σωστά στην έδρα της, τότε έχουμε απώλεια συμπίεσης και η πτώση της ιπποδύναμης είναι δραματική!

Το φαινόμενο του “Valve Floating” δηλαδή όταν η βαλβίδα χοροπηδά πάνω στην έδρα της, λόγω της αδυναμίας του ελατηρίου να ακολουθείσει πιστά το προφίλ του εκκεντροφόρου, είναι ο χειρότερος εχθρός για κάθε κινητήρα υψηλής απόδοσης.

Με δεδομένη τη μεταλλουργία της εποχής του 1960, ο Soihiro Honda έδωσε όλο το βάρος  στους τετραβάλβιδους θαλάμους καύσης στις μοτοσυκλέτες των Grand Prix, καθώς οι μικρότερες/ελαφρύτερες βαλβίδες και ελατήρια σε σχέση με τους διβάλβιδους, μείωναν στο ελάχιστο τις αρνητικές επιπτώσεις της αδράνειας και του επέτρεπαν να σχεδιάσει αξιόπιστους κινητήρες που ανέβαζαν περισσότερες στροφές χωρίς απότομη πτώση της απόδοσής τους.

Αυτό στην θεωρία, διότι στην πράξη οι πρώτοι τετραβάλβιδοι της Honda δεν είχαν στους αγώνες τη δύναμη και την αξιοπιστία των διβάλβιδων αντιπάλων του και η Honda συμμετείχε σε αρκετούς αγώνες έχοντας μία τετραβάλβιδη και μία διβάλιβιση μοτοσυκλέτα ταυτόχρονα. Η αιτία είχε να κάνει με τον προβληματικό σχεδιασμό της συνολικής τροφοδοσίας του θαλάμου καύσης και η κακή ποιότητα καύσης προκαλούσε υπερθερμάνσεις στα έμβολα ρίχνοντας την απόδοση ή καταστρέφοντάς τα. Όταν μετά από δύο χρόνια βρήκε τον τρόπο να διαχειρίζεται σωστά την κίνηση του αέρα στους αυλούς εισαγωγής και τους στροβιλισμούς μέσα στο θάλαμο καύσης, οι τετραβάλβιδοι κινητήρες της Honda κυριάρχησαν στα Grand Prix και το ίδιο έκανε η MV Agusta αργότερα με τους δικούς της τετραβάλιδους αγωνιστικούς κινητήρες. 

Περίπου την ίδια εποχή στην άλλη άκρη της γης από την Ιαπωνία και συγκεκριμένα στην Bologna της Ιταλίας, o κύριος Taglioni σκέφτηκε πως δεν χρειάζεται να ανακαλύψουμε τον τροχό από την αρχή, προσπαθώντας να κάνουμε έναν τετραβάλβιδο θάλαμο καύσης να δουλέψει σωστά. Μπορούμε απλώς να λύσουμε τα προβλήματα της αδράνειας του συστήματος κίνησης των βαλβίδων στους διβάλβιδους θαλάμους καύσης.

Αφού λοιπόν το ελατήριο και η αδράνειά του είναι εκείνο που μας εμποδίζει να αυξήσουμε το όριο στροφών σε έναν διβάλβιδο κινητήρα με μεγάλες βαλβίδες και πολύ “άγριου” χρονισμού εκκεντροφόρους, τότε ας απαλλαγούμε εντελώς από την παρουσία του!

Ανασύροντας την ιδέα της δεσμοδρομικής κίνησης των βαλβίδων, ο Taglioni ανέπτυξε ένα σύστημα με δύο κοκκοράκια (βασισμένο σε εκείνο της Mercedes-Benz που σάρωνε τις νίκες με τα Silver Arrow) όπου το ένα πίεζε την βαλβίδα προς τα κάτω και το άλλο την έσπρωχνε προς τα πάνω, ακολουθώντας με απόλυτη ακρίβεια το προφίλ του εκκεντροφόρου. Αυτό σημαίνει πως οι κινητήρες Desmo έχουν θεωρητικά μηδενική αδράνεια στην κίνηση των βαλβίδων και όταν η βαλβίδα επιστρέφει στην έδρα της δεν χοροπηδάει πάνω της, οπότε δεν υπάρχει καμία απώλεια συμπίεσης στις υψηλές στροφές.

Τα μοντέλα με κινητήρες Desmo της Ducati είχαν πολύ πιο “άγριους” εκκεντροφόρους σε σχέση με τα μοντέλα που δεν είχαν Desmo και χάρη στο απόλυτο σφράγισμα του θαλάμου καύσης έως τον κόφτη, είχαν πολύ παραπάνω δύναμη στις υψηλές στροφές.

Σε συνδυασμό με τον μεγάλο όγκο αέρα στον μεγάλης διατομής αυλό εισαγωγής της διβάλβιδης κεφαλής, οι κινητήρες Desmo της Ducati με τους πολύ “άγριους” εκκεντροφόρους είχαν (και εξακολουθούν να έχουν) εξαιρετική πλήρωση μείγματος προς τον θάλαμο καύσης και άριστη ποιότητα καύσης σε όλο το φάσμα των στροφών.

Αυτό ισχύει τόσο για τους διβάλβιδους Desmo κινητήρες του Taglioni, όσο και για τους τετραβάλβιδους Desmo κινητήρες του Bordi, όπως φυσικά και για τους πολυκύλινδρους Desmo κινητήρες των MotoGP του Sairu.

Για τον περισσότερο κόσμο τα δεσμοδρομικά συστήματα κίνησης των βαλβίδων ανακαλύφθηκαν για να μην “καρφώνουν” βαλβίδες οι κινητήρες στις πολύ υψηλές στροφές και ως ένα βαθμό αυτό είχε μια λογική έως τη δεκαετία του 1960 λόγω της μεταλλουργίας της εποχής. Σήμερα όμως μόνο από κατασκευαστικό σφάλμα ή κακή χρήση/ρύθμιση μπορεί να “καρφώσει” βαλβίδα ένας κινητήρας με συμβατικά ελατήρια επαναφοράς.

Το ερώτημα φυσικά είναι γιατί οι άλλοι κατασκευαστές δεν μπήκαν στον κόπο να ασχοληθούν με τα δεσμοδρομικά συστήματα κίνησης των βαλβίδων και “παιδεύονται” τόσα χρόνια με τα ελατήρια επαναφοράς.

Η απάντηση είναι απλή: Κόστος κατασκευής, δυσκολίες συντήρησης για οχήματα καθημερινής χρήσης (συχνότητα ρυθμίσεων, κόστος αναλώσιμων, ακριβή εργατοώρα εξειδικευμένων μηχανικών). Η ίδια η Ducati εξήγησε με τον καλύτερο τρόπο τους λόγους που δεν έβαλε Desmo στον V4 της Multistrada και όλοι τους έχουν να κάνουν με… τα λεφτά!

Μην ξεχνάμε πως Desmo είχαν μόνο μερικά special μοντέλα της Ducati. Το Desmo έγινε σήμα κατατεθέν της Ducati στα τέλη της δεκαετίας του ’80 επειδή κατασκεύαζε μόνο τον κινητήρα του Pantah για όλα τα μοντέλα της.

Στις μέρες μας, η πλειοψηφία των κατασκευαστών χρησιμοποιεί πνευματικές βαλβίδες για τους κινητήρες της F1 και των MotoGP, καθώς ο αέρας έχει απείρως μικρότερο βάρος και αδράνεια από οποιοδήποτε ελατήριο επαναφοράς. Για τους κινητήρες παραγωγής, η “συμβατική” λύση των ελατηρίων επαναφοράς επαρκεί και με το παραπάνω.