Η ιστορία του Carbon-Fibre

Ο θησαυρός είναι από άνθρακα...
Θάνο Αμβρ. Φελούκα
Από τον

Θάνο Αμβρ. Φελούκα

9/12/2016

Γράφαμε στο περιοδικό πριν από οκτώ χρόνια, πως έπρεπε το ανθρακόνημα να αντιμετωπιστεί διαφορετικά από τους κατασκευαστές για να φτάσει κάποτε να γίνει δομικό στοιχείο της μοτοσυκλέτας. Πως στόχος δεν θα πρέπει να είναι να αντιγράψει το αλουμινένιο πλαίσιο, αλλά να χρησιμοποιηθεί τελείως διαφορετικά και μόνο τότε θα ξεχωρίσει. Θα έπρεπε να αναθεωρηθεί η ίδια η λειτουργία του πλαισίου και να υποχωρήσει ο βαθμός ακαμψίας του όσο βελτιώνονται άλλοι τομείς, όπως οι αναρτήσεις και τα ελαστικά αφού οι μοτοσυκλέτες δεν πρέπει να αντιμετωπίζονται ως ξεχωριστά μηχανολογικά κομμάτια, αλλά ως ένας οργανισμός με ποικίλους βαθμούς ελαστικότητας, συντονισμού και απόσβεσης. Το ανθρακόνημα -είχαμε γράψει- είναι ιδανικό για να λύσει τέτοια θέματα συνεργασίας μέσα σε κατασκευές. Και δείχνει και ωραίο...

 

Το 2017 μπαίνουν σε παραγωγή, περιορισμένη και για πολύ γερά πορτοφόλια, δύο μοτοσυκλέτες φτιαγμένες από carbon. Για να φτάσουμε σε αυτό το σημείο το σύνθετο αυτό υλικό έχει σημειώσει μία πολύ μακρά πορεία. Μόλις τα τελευταία χρόνια, και με την βοήθεια της τεχνολογίας που με την ακριβή προσομοίωση βοηθά τους μηχανικούς να γλιτώνουν εργατοώρες από δοκιμές, έχουν κατανοηθεί πλήρως οι δυνατότητες του υλικού ως δομικού στοιχείου της μοτοσυκλέτας.

Οι συνδυασμοί και οι ιδιότητες που μπορεί να του προσδώσει εκείνος που το φτιάχνει, είναι πρακτικά ανεξάντλητες και η πληθώρα αυτή σε επιλογές καθιστά την εξέλιξη χαώδη. Μπορεί κάποιος να του δώσει όση σκληρότητα και ελαστικότητα θέλει, και αυτό σημαίνει ότι χρειάζεται να αναθεωρήσει από την αρχή την μοτοσυκλέτα ως σύνολο, πριν φτάσει να το χρησιμοποιήσει ως δομικό στοιχείο. Αυτά γράφαμε και πίσω στο 2008, οπότε πάμε να κάνουμε μία σύντομη αναδρομή στα πρώτα βήματα του carbon για να δούμε πώς φτάσαμε στην Superleggera της Ducati και το HP4 Race της BMW…

 

Το ενισχυμένο ανθρακονημάτινο πλαστικό (CFRP), είναι εξαιρετικά διαδεδομένο συνθετικό, χάρη στη χρήση του στα αεροσκάφη, τα αγωνιστικά αυτοκίνητα και ως ελαφρύ διακοσμητικό σε άπειρα προϊόντα. Παραμένει σχετικά ακριβό, λόγω της πολύπλοκης χημικής διαδικασίας και της χρονοβόρας κατασκευής του.

Το ανθρακόνημα -όπως το ξέρουμε τώρα- εφευρέθηκε από Άγγλους χημικούς, αμέσως μετά τον δεύτερο παγκόσμιο πόλεμο, αλλά δεν ήταν ευρέως διαδεδομένο, πιο συγκεκριμένα: Οι ιδιότητες του carbon και η διαδικασία δημιουργίας του, είναι γνωστές πριν από το 1900, ωστόσο χρειάστηκαν σχεδόν 60 χρόνια για να βρεθεί τρόπος να παραχθεί σύνθετο υλικό με υψηλή πυκνότητα σε carbon. Ένα από τα άλματα στην πρόοδο οφείλεται στον Ιάπωνα Akio Shindo αλλά τελικά ήταν η αμερικάνικη εταιρία HITCO που λίγα χρόνια αργότερα κατασκεύασε πρώτη υλικό με 99% περιεκτικότητα σε carbon. Η εταιρία αυτή είναι μέχρι και σήμερα πρωτοπόρος στην παραγωγή σύνθετων υλικών, ωστόσο στις αρχές τις δεκαετίας του ’60, ήταν –τελικά- η Βρετανική Αεροπορία που βρήκε την καλύτερη χρήση για το carbon fibre και κατοχύρωσε τις αντίστοιχες πατέντες, τις οποίες στην συνέχεια παραχώρησε με συμβόλαια σε αγγλικές βιομηχανίες.

 

Εκείνη την εποχή, έπρεπε να τελειοποιηθεί η διαδικασία συνδυασμού του προπανίου (ή του προπυλενίου) και της αμμωνίας -η προηγούμενη διαδικασία περιλάμβανε τη χρήση κυανιδίων υδρογόνου, με προφανή προβλήματα και όχι ιδιαίτερα καλά αποτελέσματα. Αυτό το υλικό, μετά πολυμερίζεται, με τις ίνες να μεγαλώνουν και να οξειδώνονται επιπλέον πριν ψηθούν στους 2.500°C, μέσα σε ένα πλούσιο σε άζωτο περιβάλλον ώστε να μετατραπεί το πλαστικό σε άνθρακα ή γραφίτη. Τα νήματα στη συνέχεια πλέκονται μεταξύ τους, για να σχηματίσουν το ανθρακόνημα ή απλώνονται ώστε να σχηματιστούν λωρίδες παράλληλων ινών, γνωστές και ως UD (Uni-Directional). Αυτά αποτελούν τη βάση για την κατασκευή εξαρτημάτων όταν οι ίνες συνδυάζονται με διαμορφωμένες ρητίνες. Οι ρητίνες είναι κυρίως εποξικές, καθώς οι ιδιότητές τους ταιριάζουν καλύτερα με τις ιδιότητες των ινών -αν και χρησιμοποιείται μερικές φορές πολυεστέρας ή βινύλιο.

 

Οι διάφορες μορφές των ανθρακονημάτων
Υπάρχει ένας μεγάλος αριθμός μεταβλητών παραμέτρων, που μας έρχεται στο μυαλό, όταν σκεφτόμαστε ανθρακονημάτινες κατασκευές. Αρχικά, υπάρχουν δύο βασικοί τύποι συνδυασμού των δύο υλικών:

Το wet-lay-up, που είναι η ίδια διαδικασία παραγωγής με του fiberglass, όπου στεγνές ίνες απλώνονται μέσα σε ένα καλούπι και προστίθεται ρητίνη αναμεμιγμένη με υγρό σκληρυντικό ή καταλύτη με το χέρι, χρησιμοποιώντας πινέλο, βούρτσα ή σπρέι -ενώ σε πιο σωστές διαδικασίες, ψεκάζεται ή εκχέεται μηχανικά. “Σακούλες” με κενό αέρος ή κλειστά καλούπια μπορεί να χρησιμοποιηθούν, για να βελτιώσουν τη συνέχεια και την ακρίβεια της διαδικασίας.

Το pre-peg, όπου οι UD ίνες έρχονται ήδη εμποτισμένες με την κατάλληλη ποσότητα ρητίνης. Αυτές πρέπει μετά να ενωθούν μέσω θερμικής διαδικασίας σε σακούλες με κενό αέρος, είτε σε φούρνο μόνο με ατμοσφαιρική πίεση, για παράδειγμα, είτε χρησιμοποιώντας παραπάνω πίεση και θερμοκρασία σε κλίβανο, για να επιτευχθούν καλύτερα αποτελέσματα.

Διαφορετικοί τύποι ινών είναι διαθέσιμοι, που ποικίλουν από άκαμπτες αλλά πιο εύθρυπτες ίνες, μέχρι εξαιρετικά δυνατές αλλά με μικρότερη ακαμψία ίνες, ενώ υπάρχουν και οι πιο κοινές και φθηνές ίνες, λιγότερο ισχυρές και άκαμπτες σαν αυτές που χρησιμοποιούνται στα καλάμια ψαρέματος. Υπάρχουν στο εμπόριο διαφορετικοί τύποι “πλεξίματος” των ινών πέρα από την UD, ενώ μερικές φορές χρησιμοποιούνται και άλλα υλικά, όπως γυαλί ή ίνες αραμιδίου ή διακοσμητικές ενισχύσεις. Οι ίνες μπορούν να απλωθούν προς μια συγκεκριμένη κατεύθυνση για να προσδώσουν συγκεκριμένα ενισχυτικά χαρακτηριστικά σε ορισμένες περιοχές, ενώ μπορούν να συνδυαστούν σε διαφορετικές στρώσεις ώστε να έχουν σύνθετες ιδιότητες.

Για κύριες δομικές εφαρμογές, στρώσεις από συγκεκριμένες ίνες με διαφορετικούς συντελεστές συνδυάζονται με άλλα βασικά υλικά. Συνήθως πρόκειται για αλουμίνιο ή αραμίδιο Nomex, το οποίο έχει επίστρωση με ρητίνη ανθεκτική στις υψηλές θερμοκρασίες, ενώ μπορεί επίσης να είναι και απλά υλικά, όπως το κοντραπλακέ ή η μπάλσα. Αυτά τα υλικά προσθέτουν πάχος, γι’ αυτό και αυξάνεται η στρεπτική ακαμψία των λεπτών ανθρακονημάτινων κομματιών, έτσι ώστε να μπορούν να χρησιμοποιηθούν σε ένα μεγάλο φάσμα εφαρμογών, σε τμήματα με μεγάλη καταπόνηση όπως στα ουραία τμήματα των αεροσκαφών ή στα μονοθέσια της F1.

Υπάρχουν επίσης πολλά είδη ρητινών που μπορούν να φτιαχτούν ειδικά για συγκεκριμένες εφαρμογές, οπότε δημιουργείται μια ποικιλία ουσιαστικά άπειρων συνθετικών, που μπορούν να χρησιμοποιηθούν σε εξειδικευμένες κατασκευές ή σε διακοσμητικές εφαρμογές. Ο λόγος ύπαρξης αυτής της ποικιλίας συνθετικών είναι φυσικά οι ιδιότητες των υλικών, που προσφέρουν σημαντικά οφέλη στο βάρος και στην αντοχή, σε σχέση με τα κράματα αλουμινίου και ατσαλιού, όπως δείχνει κι ο σχετικός πίνακας.

 

 

 

 Όριο θραύσης (kg/mm2)

Πυκνότητα (gr/cm3)

Ειδική αντοχή

Ανθρακόνημα

3,50

1,75

2,00

Ατσάλι

1,30

7,90

0,17

 

Όπως φαίνεται, το ανθρακόνημα έχει αντοχή στην θραύση σχεδόν τρεις φορές μεγαλύτερη από το ατσάλι, αλλά παρ' όλα αυτά είναι 4,5 φορές πιο αραιό. Όταν συνδυαστεί με υλικά που έχουν ως χαρακτηριστικό τους την προσχεδιασμένη παραμόρφωση κάτω από φορτίο, το ανθρακόνημα έχει αποδειχθεί ανεκτίμητο στις κατασκευές για απόσβεση κρούσης, ακόμη και σε μικρά τμήματα όπως τα ρύγχη των αεροσκαφών. Η αξία του, λόγω του χαμηλού του βάρους, οδήγησε στην υιοθέτησή του από τις μεγάλες αεροπορικές κατασκευές, όπως το νέο Dreamliner 787 της Boeing και το Airbus 380, δημιουργώντας έλλειψη από το υλικό, παρά τους περιορισμούς και το κόστος της παραγωγής.

 

Το Carbon στα πλαίσια μοτοσυκλετών, πολύ πριν την σημερινή εποχή που μπαίνει στην παραγωγή - έστω και περιορισμένη
 
Πολλοί άνθρωποι, κατά τη διάρκεια του Τσεχοσλοβάκικου GP το 1990, ανυπομονούσαν να δουν το ντεμπούτο ενός μοναδικού, νέου μηχανολογικού concept, που κρυβόταν στα πιτς της ιταλικής ομάδας της Cagiva. Ο ενθουσιώδης αλλά και έμπειρος αναβάτης, ο Randy Mamola, θα οδηγούσε για πρώτη φορά το C590, το δίχρονο 500 που διέθετε ένα εξ ολοκλήρου ανθρακονημάτινο πλαίσιο. Αντί για τις συνήθεις αλουμινένιες δοκούς που στήριζαν τα πάντα, η μοτοσυκλέτα είχε μια μαύρη γυαλιστερή στεφάνη από το εξωτικό υλικό, που είχε φέρει την επανάσταση στον χώρο των αγωνιστικών αυτοκινήτων κατά τη δεκαετία του '80.

Ενώ το ανθρακόνημα είχε υιοθετηθεί για να αντικαταστήσει το fiberglass, ως το καταλληλότερο υλικό για τα κοστούμια, ήταν η πρώτη φορά που παρουσιάστηκε ως δομικό στοιχείο της μοτοσυκλέτας. Η μοτοσυκλέτα θα έτρεχε επίσης με το νέο πλαίσιο στον επόμενο αγώνα, στο Ουγγρικό GP, αλλά τα προβλήματα προσαρμογής στο νέο υλικό, σήμαιναν πως θα υπήρχε αναβολή επ' αόριστον. Μέσα στον πυρετό των αγώνων, η σχετικά μικρή ομάδα δεν είχε τον χρόνο ή τον προϋπολογισμό για να επιμείνει στο καινούριο πλαίσιο, και επέστρεψε στο μεταλλικό.

το ανθρακόνημα έχει αντοχή στην θραύση σχεδόν τρεις φορές μεγαλύτερη από το ατσάλι, αλλά παρ' όλα αυτά είναι 4,5 φορές πιο αραιό

Ενώ το ανθρακόνημα ήταν γνωστό στους αγώνες μοτοσυκλετών για σχεδόν μια δεκαετία, ελάχιστες μοτοσυκλέτες το χρησιμοποίησαν -γι' αυτό και η Cagiva είχε ελάχιστα δεδομένα για να αντλήσει πληροφορίες. Πάντως, λίγα χρόνια πριν οι μοτοσυκλέτες των GP εξοικειωθούν με το υλικό, πολλοί μικροί εξειδικευμένοι κατασκευαστές, είχαν αντιληφθεί τα σημαντικά πλεονεκτήματα που διέθετε το ανθρακόνημα. Ίσως ο σημαντικότερος όλων αυτών, να ήταν ο Νεοζηλανδός αρχιτέκτονας John Britten, με το αγωνιστικό V2 που κατασκεύασε. Εξελιγμένη μέσα από διαφορετικές παραλλαγές, από το 1987 μέχρι το 1991 που κατέληξε στην τελική της μορφή, η μοτοσυκλέτα διέθετε μια ολοκληρωτικά ανθρακονημάτινη ραχοκοκαλιά. Από το 1991, κέρδισε οκτώ αγώνες στη Daytona και το 1995 το παγκόσμιο πρωτάθλημα BEARS, ενώ έγινε ένα από τα κύρια εκθέματα στο μουσείο Guggenheim.

Στο δεύτερο πρωτότυπό του (το aero d-one), ο Britten χρησιμοποίησε ανθρακόνημα τόσο για την έδραση του κινητήρα, όσο και για να ενώσει τα συστήματα μπροστινής και πίσω ανάρτησης. Μέχρι το 1992, η μοτοσυκλέτα είχε εξελιχθεί, με ένα μισό φέρινγκ, έναν κινητήρα που είχε σχεδιάσει και κατασκευάσει ο ίδιος ο Britten, ένα ανθρακονημάτινο ψαλίδι και ανθρακονημάτινο μπροστινό, αντί ενός συμβατικού τηλεσκοπικού πιρουνιού.

Αντίπαλος του Britten στο πρωτάθλημα BEARS (British European and American Racing Series), ήταν το Triumph Taylormade / Saxon, το οποίο αν και είχε αλουμινένιο σωληνωτό πλαίσιο, έκανε εκτεταμένη χρήση ανθρακονήματος στο κοστούμι του, και στους αεραγωγούς που τροφοδοτούσαν με αέρα το τοποθετημένο προς τα πίσω ψυγείο του. Αυτό, είχε σχεδιαστεί από τον John McQuilliam, ο οποίος μελέτησε πολύ το ανθρακόνημα, φτάνοντας στη θέση του αρχι-σχεδιαστή στην ομάδα Jordan στα GP (πλέον, Spyker F1Team).

Ο John είχε επίσης εμπλακεί εκείνη την εποχή (το 1993) με ένα άλλο ανθρακονημάτινο πρωτότυπο πλαίσιο, από τον Βρετανό ειδικό στα πλαίσια, Hejira, το οποίο ήταν αντίγραφο του αντίστοιχου ατσάλινου. Όπως και του Cagiva, το δοκίμασαν και το εγκατέλειψαν. Το Triumph διέθετε επίσης ανθρακονημάτινες ζάντες με αλουμινένια κέντρα.

Και ο Britten χρησιμοποιούσε ζάντες από συνθετικό υλικό, αρκετά όμοιες με αυτές που πουλάνε η Dymag και η Blackstone Tek. Το όφελος από αυτούς τους τροχούς, είναι η σημαντικά καλύτερη συμπεριφορά και ο έλεγχος, με μικρότερη αδράνεια και ελαφρύτερη μη αναρτώμενη μάζα, ενώ η αντοχή τους είναι μεγαλύτερη σε σχέση με τους αντίστοιχους αγωνιστικούς τροχούς από μαγνήσιο.

 

Το ανθρακόνημα στην παραγωγή
 
Η χρήση του ανθρακονήματος ως δομικό στοιχείο έμεινε περιορισμένη σ' αυτούς τους μικρούς κατασκευαστές. Πολύ λίγες μοτοσυκλέτες παραγωγής έχουν χρησιμοποιήσει το ανθρακόνημα ως δομικό στοιχείο, λόγω του μεγάλου κόστους και των δυσκολιών που επιφέρει στις αυτοματοποιημένες γραμμές παραγωγής. Η πιο συχνή χρήση του ήταν σε αγωνιστικά φέρινγκ, αλλά και σε μερικά φέρινγκ μοτοσυκλετών δρόμου, όπως το Bimota YB8 Furano, και γύρω από τα όργανα του εξωτικού Mantra, καθώς αυτά είναι από ξύλο!

Η Bimota είχε επίσης κατασκευάσει φτερά από ανθρακόνημα, όπως και η Ducati. Η Ducati είχε αρχικά χρησιμοποιήσει ανθρακόνημα και στην κατασκευή φιλτροκουτιών για την περιορισμένη παραγωγή των 916, ώστε να αυξηθεί η ακαμψία του πλαισίου, ενώ το Bimota SB8R -το οποίο παρουσιάστηκε 1997- έχει ανθρακονημάτινες πλάκες στήριξης του ψαλιδιού, πάνω στις οποίες βιδώνει το αλουμινένιο πλαίσιο. Η Honda έκανε μεγάλη αίσθηση το 1992 με την περιορισμένης παραγωγής NR 750, η οποία εκτός από τα μοναδικά οβάλ έμβολα, είχε ένα εξ ολοκλήρου ανθρακονημάτινο κοστούμι “CFRP”. Το κέρδος σε βάρος βέβαια δεν είχε άμεσο αντίκτυπο, καθώς ξεπερνούσε τα 220 κιλά συνολικά.

 

Από τα μέσα της δεκαετίας του '90, ένας μεγάλος αριθμός από προμηθευτές after market, προσέφεραν εξαρτήματα (όχι δομικά στοιχεία) όπως καπάκια και φτερά, καθώς το ανθρακόνημα γινόταν πιο γνωστό και διαθέσιμο, κυρίως λόγω της χρήσης του στους αγώνες. Στην πραγματικότητα, το ανθρακόνημα είχε τέτοιο αντίκτυπο στα τέλη της δεκαετίας του '90, που πολλές μοτοσυκλέτες παραγωγής, είχαν πολλά πλαστικά κομμάτια διακοσμημένα με αυτοκόλλητα που έμοιαζαν με ανθρακονήματα.

Εκείνη την εποχή πολλές αγωνιστικές ομάδες χρησιμοποιούσαν αυτό το υλικό, για περισσότερα πράγματα απ’ ό,τι το φέρινγκ και τα φρένα -όπως για την κατασκευή της ουράς της μοτοσυκλέτας ή για τα καπάκια των κινητήρων και των κεφαλών. Επίσης σημαντικό ήταν όμως και το γεγονός, ότι πολλοί είχαν εγκαταλείψει τη χρήση του σε βασικά μέρη, όπως το πλαίσιο και το ψαλίδι, παρά την επιτυχία του Britten -που όμως δεν είχε τρέξει σε επίπεδο GP.

Η Cagiva ήταν η πρώτη εταιρεία που δοκίμασε στους αγώνες ένα πλαίσιο και ψαλίδι εξ ολοκλήρου από ανθρακόνημα. Δυστυχώς, η ελλιπής γνώση πάνω στη νέα τεχνολογία και ο μειωμένος προϋπολογισμός, οδήγησαν σε εγκατάλειψη του σχεδίου

Η Suzuki ήταν επίσης ανάμεσα στις εταιρίες που δοκίμασε ένα ανθρακονημάτινο πλαίσιο το οποίο επίσης εγκαταλείφθηκε, την στιγμή που σε έναν παράλληλο κόσμο εκείνο των αυτοκινήτων, το carbon έκανε μία διαφορετική καριέρα… Η Cagiva είχε στενούς δεσμούς με τη Ferrari, κι αυτή η σχέση ενθάρρυνε την ανταλλαγή τεχνολογίας με τη λογική “αφού το ανθρακόνημα είναι πολύ ακριβό και δουλεύει μια χαρά ως βασικό δομικό στοιχείο για τα F1, σίγουρα μπορεί να κάνει το ίδιο και τις μοτοσυκλέτες των GP”. Στην F1 παρουσιάστηκε πρώτη φορά το ανθρακόνημα το 1981, με τη Lotus και τη McLaren να διαθέτουν ανθρακονημάτινο πλαίσιο. Η Lotus ήταν κατά κάποιο τρόπο “άχαρη” στην αντιγραφή του προηγούμενου αλουμινένιου πλαισίου για το μονοθέσιό της, με κομμένα και ραμμένα ανθρακονημάτινα κομμάτια, αλλά το MP4/1 της McLaren έδειξε το μέλλον, με ένα πιο ψαγμένο πλαίσιο, εξελιγμένο από την αμερικάνικη εταιρεία διαστημικής τεχνολογίας, Hercules.

Τα προτερήματα μιας κατασκευής που ήταν ελαφρύτερη, πιο ανθεκτική και με καλύτερο αεροδυναμικό προφίλ, έγιναν άμεσα εμφανή. Δύο σημαντικά οφέλη που οδήγησαν στη γενικότερη υιοθέτησή του, είναι η ακαμψία του και η δυνατότητά του για ελεγχόμενες παραμορφώσεις κατά την κρούση. Επίσης το γεγονός ότι σε αυτό το σπορ, το κόστος δεν αποτελεί ιδιαίτερο πρόβλημα, ήταν επίσης σημαντικό.

 

Ακαμψία: Σύμμαχος κι εχθρός
Τα κύρια χαρακτηριστικά της υψηλής αντοχής και του μικρού βάρους είναι ελκυστικά, αλλά ενώ το ανθρακόνημα είναι ελαφρύτερο, μπορεί να είναι υπερβολικά ισχυρό για μερικές εφαρμογές. Όταν το ανθρακόνημα μπήκε αρχικά στις μοτοσυκλέτες των GP, η τάση ήταν να αυξάνεται η ακαμψία των αλουμινένιων πλαισίων, ώστε να συνεργάζονται με τα ελαστικά και τις αναρτήσεις της εποχής. Το άλμα που έκανε η Cagiva, ήταν το επόμενο λογικό στάδιο στην κατασκευή αγωνιστικών μοτοσυκλετών -ιδιαίτερα με την άνθηση που γνώριζε η χρήση του υλικού στην F1.

Οι μετέπειτα εξελίξεις έδειξαν, πως ενώ οι αγώνες μοτοσυκλετών εξελίσσονταν παράλληλα με τη βελτίωση των ελαστικών, τα πολύ άκαμπτα πλαίσια έφερναν ουσιαστικά αντίθετα αποτελέσματα -ειδικά με τις πολύ μικρές διαδρομές των αναρτήσεων. Στη διάρκεια εξαιρετικά μεγάλων κλίσεων, οι αναρτήσεις είναι σχεδόν αναποτελεσματικές στο να αποσβέσουν τις ανωμαλίες -αν και μπορούν να αντιδράσουν πριν και μετά τη μεταφορά βάρους. Κάτω από τέτοιες συνθήκες, αυτό που χρειάζεται είναι κάποια ελαστικότητα, τόσο στις αναρτήσεις όσο και στο ίδιο το πλαίσιο.

Η Cagiva το ανακάλυψε αυτό, κατά τη διάρκεια των δύο αγώνων πίσω στα 1990, με τον Mamola και τον Ron Haslam, οι οποίοι βρήκαν τη ρύθμιση των αναρτήσεων και την πληροφόρηση από το πλαίσιο τόσο διαφορετικά, που οι νορμάλ ρυθμίσεις τους για τις μοτοσυκλέτες δεν δούλεψαν καθόλου, και η μοτοσυκλέτα δημιούργησε περισσότερα θέματα από αυτά που έλυνε. Αν και εγκατέλειψαν το πλαίσιο, αυτό δεν εμπόδισε την Cagiva να διατηρήσει το ανθρακονημάτινο ψαλίδι (μειώνοντας το μη αναρτώμενο βάρος) μέχρι την απόσυρση της ομάδας από τους αγώνες, το 1995.

Παρ' όλα αυτά τα θέματα, οι αγωνιστικές μοτοσυκλέτες από τα μέσα της δεκαετίας του '90 είχαν κάνει αρκετή χρήση των ανθρακονημάτων σε άλλους τομείς. Εκτός από τα φέρινγκ που έγιναν όσο πιο λεπτά και ελαφριά γίνεται, ενώ άντεχαν σε ταχύτητες των 320 χιλιομέτρων την ώρα, το ανθρακόνημα χρησιμοποιούταν στα φτερά και στα καπάκια των κινητήρων. Επίσης, το ανθρακόνημα είχε αντικαταστήσει το αφαιρούμενο αλουμινένιο υποπλαίσιο ενώ χρησιμοποιούταν και για την ενίσχυση των φιλτροκουτιών, των ρεζερβουάρ και των εξατμίσεων.

Οι ομάδες της Aprilia και της Ducati στα MotoGP είχαν δοκιμάσει ανθρακονημάτινα καλάμια πιρουνιών διαμέτρου 42 χιλιοστών, αλλά λόγω των προβλημάτων που δημιουργούν οι διαφορετικοί συντελεστές ακαμψίας, ή και του ότι δεν υπήρχε κανένα ουσιαστικό όφελος, σε σχέση με τα αντίστοιχα αλουμινένια των 50 χιλιοστών, σταμάτησαν τη χρήση τους.

 

Πριν από σχεδόν δεκαπέντε χρόνια, η πιο σύγχρονη εφαρμογή της τεχνολογίας του carbon ήταν στα αγωνιστικά φρένα, που πρώτη φορά είδαμε στα μέσα της δεκαετίας του '80 στα εμπορικά αεροσκάφη και στην F1. Αυτοί οι δίσκοι από carbon ήταν εντελώς ακατάλληλοι για χρήση στον δρόμο, καθώς η απαιτούμενη θερμοκρασία λειτουργίας τους έπρεπε να είναι μεταξύ 300°C και 600°C. Ήταν επίσης πολύ ακριβοί, λόγω της χρονοβόρας διαδικασίας παραγωγής (τρεις με έξι μήνες), με τον κάθε δίσκο να κοστίζει τότε περίπου €3.500. Οι μοτοσυκλέτες των GP τρέχουν συχνά με ανθρακονημάτινα προστατευτικά, που απομακρύνουν τη ζέστη από την επιφάνεια των carbon δίσκων, ενώ αν είναι “βρόχινος” ο αγώνας, αντικαθίστανται με ατσάλινους δίσκους και αντίστοιχα τακάκια.

Εκείνη την εποχή είδαμε από την αμερικάνικη Starfire Systems την πρώτη μορφή των carbon-κεραμικών δίσκων, τους Starblade, οι οποίοι κατασκευάζονταν από διήθηση των πολυμερών και πυρόληση (PIP) των ανθρακονημάτων και των καρβιδίων σιλικόνης, φτιάχνοντας μια επιφάνεια δίσκων που μπορούσε να χρησιμοποιηθεί τόσο σε στεγνές όσο και σε βρεγμένες και κρύες συνθήκες, παρέχοντας πλήρη απόδοση στην επιβράδυνση, με βάρος όσο το ένα τρίτο των αντίστοιχων ατσάλινων. Πλέον η τεχνολογία έχει κάνει άλματα και στις μέρες μας η Brembo έχει βελτιώσει σε μεγάλο βαθμό το κόστος των carbon δίσκων αλλά και την διαδικασία ελέγχου που γίνεται με υπερήχους, με τους κεραμικούς δίσκους να είναι πλέον στο προσκήνιο.

Το λάθος που έκανε κάποτε η Cagiva, αλλά και πολλοί άλλοι, όταν σκέφτηκαν αρχικά να χρησιμοποιήσουν συνθετικά υλικά, ήταν ότι προσπάθησαν να αντιγράψουν τα μεταλλικά εξαρτήματα, μετατρέποντάς τα σε ανθρακονημάτινα. Το νέο υλικό ήταν εντελώς διαφορετικό σε ό,τι αφορά τις φυσικές του ιδιότητες σε σχέση με το αλουμίνιο, οπότε γιατί να αντιγράψει κάποιος το σχήμα των μεταλλικών μερών; Αυτό έκαναν αρχικά, όπως παραδέχτηκαν, πολλές αγωνιστικές ομάδες αυτοκινήτων -αλλά πολύ γρήγορα εξοικειώθηκαν με την τεχνολογική χρήση του ανθρακονήματος και επέκτειναν τα μοναδικά χαρακτηριστικά του. Η αλματώδεις εξέλιξή του που βλέπουμε σήμερα, θα είχε έρθει νωρίτερα, αν είχαν ακολουθήσει διαφορετική στάση…

Παρά τις υπερβολικές προδιαγραφές για την προστασία κατά την κρούση, ο λόγος αντοχής προς το βάρος του ανθρακονήματος, μπορεί να προσφέρει πολλά πλεονεκτήματα αν χρησιμοποιηθεί σωστά -και έφτασε η ώρα να επανεκτιμηθεί. Η κληρονομιά από τις πρώτες προσπάθειες της Cagiva (και της Suzuki) με ένα ανθρακονημάτινο πλαίσιο, οδήγησε τον κόσμο της μοτοσυκλέτας στο να εγκαταλείψει την προσπάθεια (αυτό συνέβη και σε πειραματισμούς με εναλλακτικά μπροστινά συστήματα, με πρωτοποριακές προσπάθειες όπως αυτή της Elf).

Είναι ειρωνεία ότι αυτή η καταπληκτική μοτοσυκλέτα, η Britten, συνδύαζε και τις δύο τεχνολογίες. Τα προβλήματα μ' αυτούς τους πειραματισμούς, σήμαιναν μια επιστροφή στις εξαιρετικά εξελιγμένες τεχνολογίες των τηλεσκοπικών πιρουνιών και των ελεγχόμενων ελαστικοτήτων στα αλουμινένια πλαίσια. Η καλύτερη κατανόηση του ανθρακονήματος και η πιο “ψαγμένη” μηχανολογία, ιδιαίτερα στον τομέα της πλέξης των ινών με τις διαφορετικές ιδιότητες, σημαίνει ότι πρέπει να επανεξεταστεί το θέμα του σχεδιασμού.

Η χρήση του δεν πρέπει απλώς να περιοριστεί στην αντικατάσταση μεταλλικών εξαρτημάτων, αλλά να εφαρμοστεί όπως πρέπει. Ο παράγοντας-κλειδί στις ελεγχόμενες ελαστικότητες του πλαισίου και του ψαλιδιού, λύνεται με τον διαφορετικό προσανατολισμό των στρώσεων, ενώ μπορεί πλέον και η ίδια η κατασκευή να αποκτήσει ικανότητες απόσβεσης δυνάμεων. Μερικές ομάδες ρητινών αυτή τη στιγμή προσφέρουν δυνατότητες “υστέρησης”, αλλά με επιπλέον εξέλιξη μπορεί να επιφέρει βελτιωθεί αυτό που ονομάζεται “χημική απόσβεση”.

Αυτός ο συντονισμός, που λειτουργεί ξεχωριστά από την ικανότητα απόσβεσης και απορρόφησης των αμορτισέρ και των ελατηρίων, έχει αποδειχθεί πολύ σημαντικός τα τελευταία χρόνια. Η Yamaha του Παγκόσμιου Πρωταθλητή του 2006, Valentino Rossi, έμεινε πίσω στην αρχή της σεζόν, λόγω προβλημάτων με το chattering. Πρόκειται για ένα κραδασμό χαμηλής συχνότητας που δεν έχει αποσβεστεί, και οφείλεται στην ασυμβατότητα μεταξύ ελαστικού, αναρτήσεων και πλαισίου, ενώ δεν ήταν σύμπτωση ότι μαζί με ένα επανασχεδιασμένο πλαίσιο, η Yamaha χρησιμοποιούσε νέα, με καλύτερη πρόσφυση, ελαστικά της Michelin.

Ο συνδυασμός αυτών των δύο δημιούργησε ένα απροσδόκητο πρόβλημα, όπως και το πολύ άκαμπτο πλαίσιο της Cagiva το 1990. Όπως έδειξαν οι πρόσφατες εξελίξεις και βελτιώσεις, στο συνολικό σχεδιασμό, οι μοτοσυκλέτες δεν πρέπει να αντιμετωπίζεται ως ξεχωριστά μηχανολογικά κομμάτια, αλλά ως ένας οργανισμός με ποικίλους βαθμούς ελαστικότητας, συντονισμού και απόσβεσης. Το ανθρακόνημα είναι ιδανικό, για να λύσει τέτοια θέματα συνεργασίας μέσα σε κατασκευές. Και δείχνει και ωραίο...

Το SB8R ήταν ανάμεσα στις πρώτες μοτοσυκλέτες παραγωγής που χρησιμοποίησαν το ανθρακόνημα ως δομικό στοιχείο σε συνδυασμό με το αλουμίνιο. Οι πλάκες που ενώνονται με το αλουμινένιο πλαίσιο και όπου στηρίζεται το ψαλίδι, είναι φτιαγμένες από carbon

 

 

Η μοτοσυκλέτα - φαινόμενο, η Britten V2 1000 του John Britten, που οι παλιοί αναγνώστες του MOTO είχαν γνωρίσει από τους πρώτους, είχε ανθρακονημάτινο ψαλίδι, πλαίσιο και εναλλακτικό μπροστινό σύστημα!
 

 

Μια από τις πρώτες διαδεδομένες εφαρμογές στις αγωνιστικές μοτοσυκλέτες, είναι τα φρένα των MotoGP, κάτι που για λειτουργικούς -αλλά και οικονομικούς- λόγους, δεν πρόκειται να φτάσει στις μοτοσυκλέτες παραγωγής
 

 

Το ψαλίδι του Mille Due, του πρωτότυπου της Aprilia στο Σαλόνι του Μιλάνου πίσω στο 2008, είχε ανθρακονημάτινο ψαλίδι και άφηνε υπόνοιες πως θα μπορούσε να φτάσει στην παραγωγή
 

 

Η θρυλική NR της Honda, μια μοτοσυκλέτα η οποία εκτός των οβάλ εμβόλων, είχε ολόκληρο κοστούμι από CFRP
 

 

Το Triumph Saxon διέθετε κι αυτό ολόκληρο κοστούμι από ανθρακόνημα, την εποχή που ανταγωνιζόταν το Britten στο παγκόσμιο πρωτάθλημα BEARS
 

Honda XL 750 Transalp εναντίον Suzuki V-Strom 800 DE: Ποιο έχει τον “καλύτερο” κινητήρα;

Ίδια συνταγή εντελώς διαφορετική φιλοσοφία σχεδιασμού
Μπάμπη Μέντη
Από τον

Μπάμπη Μέντη

24/11/2022

Όταν τα λεφτά στις τσέπες λιγοστεύουν, τότε οι δικύλινδροι εν σειρά θριαμβεύουν! Τόσο μετά τον Β’ Παγκόσμιο Πόλεμο, όσο και τώρα, το κόστος κατασκευής και τα χρήματα που έχουν οι μοτοσυκλετιστές για την αγορά μιας καινούριας μοτοσυκλέτας αποκτούν κυρίαρχο ρόλο. Σε αυτό το περιβάλλον οικονομικής πίεσης προς τους κατασκευαστές και τους αγοραστές, ο δικύλινδρος εν σειρά έχει όλα τα πλεονεκτήματα με το μέρος του, διότι έχει ελάχιστα μεγαλύτερο κατασκευαστικό κόστος από έναν μονοκύλινδρο, είναι ελάχιστα μεγαλύτερος σε όγκο και βάρος από έναν μονοκύλινδρο και την ίδια στιγμή έχει απόδοση και ποιότητα λειτουργίας αντίστοιχη ενός V2. Αν μάλιστα του βάλεις στρόφαλο 270⁰, τότε ακούγεται σαν V2 και έχει το ίδιο πλεονέκτημα πρόσφυσης του πίσω τροχού με έναν V2 λόγω των μεγαλύτερων χρονικών κενών μεταξύ των αναφλέξεων σε σχέση με ένα δικύλινδρο εν σειρά με στρόφαλο 180⁰.  

Μέχρι τα 500 κυβικά, οι κατασκευαστές προτιμούν τους δικύλινδρους εν σειρά με στρόφαλο 180⁰ διότι έχουν λιγότερους κραδασμούς δεύτερης τάξης, δεν χρειάζονται μεγάλου βάρους αντικραδασμικούς άξονες και ως αποτέλεσμα ανεβάζουν ταχύτερα περισσότερες στροφές, ευνοώντας την επίτευξη μεγαλύτερης ιπποδύναμης και πιο… σπορ συμπεριφοράς.

Γι΄αυτό τα δικύλινδρα Yamaha MT-03/R3, Honda CB 500 και Kawasaki Ζ400/Ninja400/Versys 300 έχουν στροφάλους 180⁰ ώστε να βγάζουν όσα περισσότερα άλογα γίνεται από τους μικρούς κυλίνδρους τους.

Αντίθετα στις μοτοσυκλέτες άνω των 500 κυβικών όπου μπορείς να έχεις σχετικά εύκολα ικανοποιητική ιπποδύναμη λόγω κυβικών, οι κατασκευαστές χρησιμοποιούν στροφάλους 270⁰ που προσφέρουν πιο “χορταστική” αίσθηση ροπής στις μεσαίες, καλύτερη πρόσφυση στον πίσω τροχό και φυσικά πιο μπάσο και βαρβάτο ήχο. Αυτή τη συνταγή ακολουθούν η Yamaha (MT-07), η ΚΤΜ (790/890 Duke), η Honda (Africa Twin 1100) και πλέον και η BMW στη νέα σειρά F750/850/900.

Μόνο η Suzuki κράταγε τον V2 κινητήρα των 650 κυβικών στην παραγωγή έως σήμερα, συμπληρώνοντας 23 χρόνια ζωής και έχοντας επιβιώσει από τις προδιαγραφές Euro4 και Euro5 που σκότωσαν όλους τους υπόλοιπους πολυκύλινδρους κινητήρες της μεσαίας κατηγορίας.

Τώρα ήρθε η ώρα και για την Suzuki να προσαρμοστεί στις πραγματικές ανάγκες της εποχής μας και να παρουσιάσει τον δικό της δικύλινδρο εν σειρά στη μεσαία κατηγορία κυβισμού. Μια απόφαση που είχε πάρει πολλά χρόνια πριν, όταν έδειξε το πρωτότυπο Recursion.

Εκεί λοιπόν που μετράει το κόστος κατασκευής και η τιμή πώλησης, οι δικύλινδροι εν σειρά αποτελούν την πιο λογική επιλογή για έναν κατασκευαστή.

Από τη στιγμή που η Honda είχε ακολουθήσει αυτή τη συνταγή στο Africa Twin 1000/1100, ήταν απόλυτα λογικό να την ακολουθήσει και στην περίπτωση του νέου Transalp 750.

Στη θεωρία λοιπόν, ο νέος κινητήρας της Suzuki και ο νέος κινητήρας της Honda ακολουθούν την ίδια ακριβώς συνταγή και μάλιστα οι ομοιότητες συνεχίζονται με τα μοντέλα που θα τον χρησιμοποιήσουν , καθώς πέραν των On-Off (Transalp 750/V-Strom 800) χρησιμοποιούνται και σε μοτοσυκλέτες δρόμου (Hornet 750/GSX-8S).

Μόνο που η συνταγή των σχεδιαστών της Honda και η συνταγή των σχεδιαστών της Suzuki έχει εντελώς – μα εντελώς λέμε – διαφορετικά υλικά και δοσολογία!

Ναι και οι δύο έφτιαξαν τούρτα, αλλά ο ένας έφτιαξε τούρτα-σοκολάτα και ο άλλος τούρτα-βανίλια!

Αν ήμασταν στη δεκαετία του ’90 που οι μοτοσυκλετιστές διάβαζαν περιοδικά, θα αρκούσε να αναφέρουμε τις διαφορές στη Διάμετρο Χ Διαδρομή των εμβόλων, τις διαφορές στα σώματα ψεκασμού, τις διαφορές στους εκκεντροφόρους και φυσικά τις διαφορές στη σχέση συμπίεσης και όλοι θα καταλάβαιναν πως ο κινητήρας της Honda έχει πιο “Street” χαρακτήρα και ο κινητήρας της Suzuki πιο “On-Off”. Για αποφυγή παρεξηγήσεων από εκείνους που κάνουν scoll-down σε οκταπύρινο smartphone και βγάζουν συμπεράσματα πριν προλάβουν να κατανοήσουν τί διάβασαν, να υπογραμμίσουμε πως ο χαρακτηρισμός “πιο street” και “πιο on-off” δεν σημαίνει “μόνο για street” και “μόνο για on-off”. Σημαίνει πως έχει χαρακτηριστικά σχεδίασης που ταιριάζουν περισσότερο σε μία από τις δύο αυτές χρήσεις. 

Επειδή λοιπόν ζούμε “στην εποχή του internet” όπου “τα βρίσκεις όλα τσάμπα” είμαστε αναγκασμένοι να επαναλαμβάνουμε κάθε φορά την αλφάβητο ακόμα και για τις αυτονόητες μηχανολογικές επιλογές των σχεδιαστών.

Παρά την ονομαστική διαφορά των 50 κυβικών, στην πραγματικότητα ο κινητήρας της Honda έχει 755 κυβικά και της Suzuki 776 κυβικά, δηλαδή η πραγματική διαφορά τους είναι μόλις 21 κυβικά υπέρ του κινητήρα της Suzuki.

Παρ΄ όλα αυτά, ο κινητήρας της Suzuki έχει μικρότερη διάμετρο εμβόλου στα 84mm ενώ της Honda έχει 87mm. Φυσικό επακόλουθο είναι η διαδρομή του εμβόλου της Suzuki να είναι αισθητά μεγαλύτερη στα 70mm, αντί για τα 63mm του κινητήρα της Honda.

Αυτό σημαίνει πως οι σχεδιαστές της Honda έχουν επιλέξει μια “υψηλής απόδοσης υπερτετράγωνη” αρχιτεκτονική για τον θάλαμο καύσης, που ευνοεί την επίτευξη μεγαλύτερης ιπποδύναμης στις υψηλές στροφές και οι σχεδιαστές της Suzuki επέλεξαν μια λιγότερη υπερτετράγωνη αρχιτεκτονική που ευνοεί την αμεσότητα απόκρισης στο γκάζι στις χαμηλές και μεσαίες στροφές.

Εδώ είναι σημαντικό να κατανοήσουμε πως είναι διαφορετικό πράγματα η ροπή ως αριθμός που εμφανίζεται στο διάγραμμα ενός δυναμόμετρου και διαφορετικό πράγμα η αίσθηση της ροπής που έχει ένας κινητήρας στο δρόμο. Στο δρόμο ο αναβάτης αισθάνεται περισσότερο την απόκριση στο γκάζι και αυτό αποκαλεί “ροπή”. Ο βασικός σχεδιασμός του κινητήρα της Suzuki ευνοεί την άμεση απόκριση στο άνοιγμα του γκαζιού και όπως θα δούμε παρακάτω, το ίδιο σκεπτικό ακολουθεί η επιλογή του ψεκασμού.

 

Οι σχεδιαστές της Honda, χάρη στη μεγαλύτερη διάμετρο εμβόλου μπορούν να βάλουν αντίστοιχα μεγαλύτερες βαλβίδες και η μικρή διαδρομή του εμβόλου ευνοεί την τοποθέτηση μικρότερου και ελαφρύτερου στροφάλου.

Καθώς οι κραδασμοί υψηλής συχνότητας δημιουργούνται κυρίως από την κίνηση της μπιέλας δεξιά-αριστερά (δυστυχώς η μπιέλα δεν παλινδρομεί μόνο κάθετα όπως το έμβολο για να εξουδετερώνονται οι δυνάμεις με το αντίβαρο του στροφάλου, αλλά ακολουθεί τα κομβία του στροφάλου), η μικρή διαδρομή εμβόλου σημαίνει αντίστοιχα μικρή απόσταση των λοβών του στροφάλου από το κέντρο περιστροφής του, οπότε και η κίνηση της μπιέλας δεξιά-αριστερά είναι μικρότερη στον κινητήρα της Honda σε σχέση με τον κινητήρα της Suzuki. Μια ματιά στα τεχνικά χαρακτηριστικά, μας αποκαλύπτει πως ο κινητήρας της Honda έχει έναν αντικραδασμικό άξονα, ενώ ο κινητήρας της Suzuki έχει δύο.

Αν ήμασταν στη δεκαετία του ’90 πιθανόν να είχαμε στα press kit στοιχεία και για το μήκος της μπιέλας, όμως στην εποχή του internet που… “τα βρίσκεις όλα”, οι εταιρείες στα press kit δεν γράφουν πια ούτε τα βασικά…

Όπως κι αν έχει, εμείς βάζουμε στοίχημα πως ο κινητήρας της Honda έχει πιο μεγάλου μήκους μπιέλες από της Suzuki, όπως συνηθίζεται στους αγωνιστικούς κινητήρες και ευνοεί την λειτουργία στις υψηλές στροφές, καθώς μειώνει την μέγιστη γωνία (ως προς την κάθετη κίνηση του εμβόλου) που έχει η μπιέλα όταν ο λοβός του στροφάλου είναι στις 90⁰ και 270⁰.

Μα καλά! Χαζοί είναι στη Suzuki και δεν έκαναν το ίδιο; Όχι βέβαια! Λέτε να μην ξέρουν να σχεδιάζουν κινητήρες εκείνοι που έφτιαξαν τον V2 του V-Strom 650 και ήταν επί 23 χρόνια κορυφαίος σε χαρακτηριστικά απόδοσης στην κατηγορία του; Προφανώς και ξέρουν, απλώς είχαν διαφορετικές προτεραιότητες και επέλεξαν διαφορετικές απαντήσεις στα προβλήματα που θα αντιμετωπίσουν σε λίγα χρόνια με τις Euro5+ προδιαγραφές.

Διαφορετικές επιλογές και όχι λάθος ή σωστές επιλογές.

Διότι ναι μεν η σχεδίαση της Honda φαίνεται πιο μοντέρνα και πιο κοντά σε εκείνη των superbike, όμως ο κινητήρας των Transalp 750 και Hornet 750 δεν μπορεί να χρησιμοποιήσει τα πανάκριβα υλικά και τις χρονοβόρες και εξειδικευμένες μεθόδους κατασκευής των εξαρτημάτων που έχει ένας κινητήρας superbike.

Αν λοιπόν ρίξουμε μια ματιά στη σχέση συμπίεσης του κινητήρα της Honda, θα δούμε πως έχει 11:1 ενώ της Suzuki έχει 12,8:1. Ώπα μάγκες, εδώ κάτι πάει λάθος! Ναι, αν ήμασταν στη δεκαετία του ’90 το λογικό θα ήταν ο “αγωνιστικός” κινητήρας της Honda να έχει πιο υψηλή  συμπίεση από της Suzuki, διότι η μεγαλύτερη διάμετρος του εμβόλου και η μικρότερη διαδρομή χρειάζονται την υψηλότερη συμπίεση για ταχύτατη καύση του μείγματος έως τις άκρες του εμβόλου.

Χωρίς υψηλή συμπίεση, ο “ρηχός” και “πλατύς” θάλαμος καύσης της Honda θα εκτόξευε στο περιβάλλον μεγάλες ποσότητες άκαυστου μείγματος και θα είχε προβλήματα ανομοιογενούς διασποράς της θερμότητας στο έμβολο. Τίποτα από τα δύο αυτά συμπτώματα δεν είναι καλό…

Όχι, ούτε οι σχεδιαστές της Honda είναι χαζοί για να μην ξέρουν τα προβλήματα. Κινητήρες με οβάλ έμβολα έφτιαχναν οι άνθρωποι, λέτε να μην ξέρουν από θαλάμους καύσης;

Το πρόβλημά τους δεν είναι πως δεν γνωρίζουν. Το πρόβλημά τους είναι πως οι προδιαγραφές Euro5 και σε λίγο Euro5+ επιβάλουν την χρήση ελατηρίων εμβόλων χαμηλής τάσης  για μείωση της κατανάλωσης καυσίμου. Τόσο ο κινητήρας της Honda, όσο και της Suzuki έχουν μαλακή αντιτριβηκή επικάλυψη, που επιβάλει τη χρήση “low friction” ελατηρίων εμβόλου.

Όσο μεγαλώνει η διάμετρος του εμβόλου, τόσο μεγαλύτερη πρέπει να είναι η τάση των ελατηρίων για να σφραγίζουν σωστά τον θάλαμο καύσης για να μην περνάνε εύκολα τα καυσαέρια και το φιλμ λαδιού από τα τοιχώματα των κυλίνδρων στα κάρτερ και αντίστοιχα αυξάνεται το επίπεδο τριβών μεταξύ του ελατηρίου συμπίεσης του εμβόλου και των τοιχωμάτων του κυλίνδρου.

Η συμπίεση του 11:1 του κινητήρα της Honda δεν είναι μικρή μεν, όμως αν οι σχεδιαστές μπορούσαν να χρησιμοποιήσουν ελατήρια εμβόλου υψηλής τάσης όπως τον παλιό καλό καιρό, να είστε βέβαιοι πως θα ξεπερνούσαν το 12,5:1.

H Suzuki από την άλλη μεριά, χάρη στη μικρότερη διάμετρο εμβόλου, είχε τη δυνατότητα να αυξήσει τη συμπίεση στο 12,8:1, διότι τα “low friction” μαλακά ελατήρια εμβόλου έχουν μικρότερη επιφάνεια να σφραγίσουν και μικρότερη επιφάνεια επααφής με τον κύλινδρο, άρα και λιγότερες τριβές στα τοιχώματα των κυλίνδρων.

Για να καταλάβετε πόσο δύσκολα έχουν γίνει τα πράγματα για τους σχεδιαστές κινητήρων λόγω των νέων προδιαγραφών ρύπων, στα αυτοκίνητα είναι αναγκασμένοι να χρησιμοποιούν λάδια 0W-20 και 0W-16 προσπαθώντας να ελαχιστοποιήσουν κάθε παρασιτική απώλεια τριβών στις χαμηλές και μεσαίες στροφές, ώστε να μειωθεί η κατανάλωση καυσίμου, άρα και οι εκπομπές ρύπων. Τώρα αν ρωτάτε πόσο καλά προστατεύουν τον κινητήρα σε βάθος χρόνου αυτά τα… “νεροζούμια”, δεν ξέρουμε να σας απαντήσουμε ακόμα…

Η Honda δίνει λάδι 10W-30 για τον κινητήρα της, που είναι αρκετά πιο λεπτόρευστο σε θερμοκρασία λειτουργίας από τα 10W-40 που είχαν έως σήμερα οι περισσότεροι κινητήρες μοτοσυκλετών (στις αγωνιστικές είναι συνήθως από 15W-50 έως 20W-60 ή μονότυπα, καθώς δουλεύουν για μεγάλα διαστήματα σε υψηλές στροφές και υψηλές θερμοκρασίες και χρειάζονται παχύρευστα λάδια που να μην σκουπίζονται εύκολα από τις επιφάνειες των μετάλλων).

Για τον κινητήρα της Suzuki δεν έχουμε τις προδιαγραφές λαδιού, αλλά το πιθανότερο είναι και αυτή να χρησιμοποιεί πιο λεπτόρευστο λάδι από το 10W-40 του V-Strom 650.

Στα παράδοξα των δύο κινητήρων είναι το σύστημα κίνησης των βαλβίδων, όπου ο “αγωνιστικός” της Honda έχει μόνο έναν επικεφαλής εκκεντροφόρο και κοκοράκι, ενώ ο “ροπάτος” της Suzuki έχει δύο επικεφαλής εκκεντροφόρους όπως κάθε υψηλής απόδοσης  κινητήρας.

Το παράδοξο αυτό έχει λογική εξήγηση, υπό την έννοια πως ο κινητήρας της Honda δεν πρόκειται να δει ποτέ στη ζωή του πάνω από τις 12.000 στροφές, οπότε το σύστημα Unicam που χρησιμοποιεί στους κινητήρες motocross των CRF450R (και στα Africa Twin/VFR 1200F) φτάνει και περισσεύει.

Η επιλογή της Suzuki από την άλλη μεριά, μοιάζει υπερβολική για τον “ροπάτο” χαρακτήρα του κινητήρα της, όμως αν δούμε λίγο προς το μέλλον, ο κινητήρας της Suzuki μπορεί πολύ εύκολα να αποκτήσει έκδοση μεγαλύτερου κυβισμού και ιπποδύναμης με την φτηνή κατασκευαστικά αύξηση της διαμέτρου των εμβόλων.

Αντιθέτως ο κινητήρας της Honda χρειάζεται αλλαγή στροφάλου για να του αυξήσεις τα κυβικά στο μέλλον και η δημιουργία έκδοσης υψηλής απόδοσης είναι σαφώς πιο ακριβή υπόθεση.

Τον διαφορετικό χαρακτήρα των δύο κινητήρων δείχνουν και οι επιλογές στο σύστημα τροφοδοσίας.

Η Honda έχει επιλέξει σώματα ψεκασμού με διάμετρο 46mm το κάθε ένα, ώστε να τροφοδοτεί με μεγάλες ποσότητες αέρα τον κινητήρα στις υψηλές στροφές. Το μειονέκτημα των μεγάλης διατομής αυλών εισαγωγής είναι φυσικά η μειωμένη ταχύτητα του αέρα προς τον θάλαμο καύσης στις χαμηλές και μεσαίες στροφές.

Η Suzuki, αν και ελαφρώς μεγαλύτερος σε κυβισμό ο κινητήρας της, έχει δύο σώματα ψεκασμού με διάμετρο 42mm το κάθε ένα. Η μικρότερη διάμετρος αυξάνει την ταχύτητα του αέρα προς τον θάλαμο καύσης στις χαμηλές και μεσαίες στροφές, ευννοώντας την αμεσότητα στην απόκριση του γκαζιού.

Επίσης μια ματιά στο φιλτροκούτι της Suzuki μας αποκαλύπτει την προσπάθεια των σχεδιαστών να μεγαλώσουν όσο γίνεται το μήκος του, βοηθώντας ακόμα περισσότερο την ταχύτητα και την ομαλότητα ροής του αέρα.

Οι ιπποδυνάμεις που ανακοινώνουν οι δύο Ιάπωνες κατασκευαστές δείχνουν πως συμβαδίζουν με την λογική του σχεδιασμού των κινητήρων τους.

Η Honda υπόσχεται 90,6 ίππους στις 9.500 στροφές και 7,6kg/m ροπής στις 7.250 στροφές.

Ο κινητήρας της Suzuki έχει 84 ίππους μεν, αλλά 1000 στροφές πιο χαμηλά, στις 8.500 και 8kg/m ροπής, επίσης πιο χαμηλά, στις 6.800 στροφές.

Πιθανόν τα πραγματικά νούμερα των μέγιστων ιπποδυνάμεων να μας επιφυλάσσουν εκπλήξεις όταν ανέβουν οι μοτοσυκλέτες στο δυναμόμετρο, αλλά ως προς τις στροφές που θα δούμε τις απόλυτες τιμές τους δεν πιστεύουμε πως θα υπάρξουν εκπλήξεις.

Το σίγουρο είναι πως πριν ρωτήσεις ποιος από τους δύο έφτιαξε τον καλύτερο κινητήρα, θα πρέπει να ξεκαθαρίσεις τι ακριβώς θεωρείς ως “καλύτερο”.